Do you want to publish a course? Click here

Can Gas prevent the Destruction of Thin Stellar Discs by Minor Mergers?

140   0   0.0 ( 0 )
 Added by Benjamin Moster
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the effect of dissipational gas physics on the vertical heating and thickening of disc galaxies during minor mergers. We produce a suite of minor merger simulations for Milky Way-like galaxies. This suite consists of collisionless simulations as well as hydrodynamical runs including a gaseous component in the galactic disc. We find that in dissipationless simulations minor mergers cause the scale height of the disc to increase by up to a factor of ~2. When the presence of gas in the disc is taken into account this thickening is reduced by 25% (50%) for an initial disc gas fraction of 20% (40%), leading to a final scale height z0 between 0.6 and 0.7 kpc, regardless of the initial scale height. We argue that the presence of gas reduces disc heating via two mechanisms: absorption of kinetic impact energy by the gas and/or formation of a new thin stellar disc that can cause heated stars to recontract towards the disc plane. We show that in our simulations most of the gas is consumed during the merger and thus the regrowth of a new thin disc has a negligible impact on the z0 of the post merger galaxy. Final disc scale heights found in our simulations are in good agreement with studies of the vertical structure of spiral galaxies where the majority of the systems are found to have scale heights of 0.4 kpc < z0 < 0.8 kpc. We also found no tension between recent measurements of the scale height of the Milky Way thin disc and results coming from our hydrodynamical simulations. We conclude that the existence of a thin disc in the Milky Way and in external galaxies is not in obvious conflict with the predictions of the CDM model.



rate research

Read More

Understanding how rotationally-supported discs transform into dispersion-dominated spheroids is central to our comprehension of galaxy evolution. Morphological transformation is largely merger-driven. While major mergers can efficiently create spheroids, recent work has highlighted the significant role of other processes, like minor mergers, in driving morphological change. Given their rich merger histories, spheroids typically exhibit large fractions of `ex-situ stellar mass, i.e. mass that is accreted, via mergers, from external objects. This is particularly true for the most massive galaxies, whose stellar masses typically cannot be attained without a large number of mergers. Here, we explore an unusual population of extremely massive (M* > 10^11 MSun) spheroids, in the Horizon-AGN simulation, which exhibit anomalously low ex-situ mass fractions, indicating that they form without recourse to significant merging. These systems form in a single minor-merger event (with typical merger mass ratios of 0.11 - 0.33), with a specific orbital configuration, where the satellite orbit is virtually co-planar with the disc of the massive galaxy. The merger triggers a catastrophic change in morphology, over only a few hundred Myrs, coupled with strong in-situ star formation. While this channel produces a minority (~5 per cent) of such galaxies, our study demonstrates that the formation of at least some of the most massive spheroids need not involve major mergers -- or any significant merging at all -- contrary to what is classically believed.
We analyse the phase-space structure of simulated thick discs that are the result of a significant merger between a disc galaxy and a satellite. Our main goal is to establish what would be the characteristic imprints of a merger origin for the Galactic thick disc. We find that the spatial distribution predicted for thick disc stars is asymmetric, seemingly in agreement with recent observations of the Milky Way thick disc. Near the Sun, the accreted stars are expected to rotate more slowly, to have broad velocity distributions, and to occupy preferentially the wings of the line-of-sight velocity distributions. The majority of the stars in our model thick discs have low eccentricity orbits (in clear reference to the pre-existing heated disc) which gives rise to a characteristic (sinusoidal) pattern for their line of sight velocities as function of galactic longitude. The z-component of the angular momentum of thick disc stars provides a clear discriminant between stars from the pre-existing disc and those from the satellite, particularly at large radii. These results are robust against the particular choices of initial conditions made in our simulations, and thus provide clean tests of the disc heating via a minor merger scenario for the formation of thick discs.
149 - E. Portaluri 2013
The nuclei of galaxies often host small stellar discs with scale-lengths of a few tens of parsecs and luminosities up to 10^7 Lsun. To investigate the formation and properties of nuclear stellar discs (NSDs), we look for their presence in a set of N-body simulations studying the dissipationless merging of multiple star clusters in galactic nuclei. A few tens of star clusters with sizes and masses comparable to those of globular clusters observed in the Milky Way are accreted onto a pre-existing nuclear stellar component: either a massive super star cluster or a rapidly rotating, compact disc with a scale-length of a few parsecs, mimicing the variety of observed nuclear structures. Images and kinematic maps of the simulation time-steps are then built and analysed as if they were real and at the distance of the Virgo cluster. We use the Scorza-Bender method to search for the presence of disc structures via photometric decomposition. In one case the merger remnant has all the observed photometric and kinematic properties of NSDs observed in real galaxies. This shows that current observations are consistent with most of the NSD mass being assembled from the migration and accretion of star clusters into the galactic centre. In the other simulation instead, we detect an elongated structure from the unsharp masked image, that does not develop the photometric or kinematic signature of a NSD. Thus, in the context of searches for a disc structure, the Scorza-Bender method is a robust and necessary tool.
We use hydrodynamic simulations of minor mergers of galaxies to investigate the nature of surface brightness excesses at large radii observed in some spiral galaxies: antitruncated stellar disks. We find that this process can produce the antitruncation via two competing effects: (1) merger-driven gas inflows that concentrate mass in the center of the primary galaxy and contract its inner density profile; and (2) angular momentum transferred outwards by the interaction, causing the outer disk to expand. In our experiments, this requires both a significant supply of gas in the primary disk, and that the encounter be prograde with moderate orbital angular momentum. The stellar surface mass density profiles of our remnants both qualitatively and quantitatively resemble the broken exponentials observed in local face--on spirals that display antitruncations. Moreover, the observed trend towards more frequent antitruncation relative to classical truncation in earlier Hubble types is consistent with a merger-driven scenario.
In this Letter we revisit arguments suggesting that the Bardeen-Petterson effect can coalign the spins of a central supermassive black hole binary accreting from a circumbinary (or circumnuclear) gas disc. We improve on previous estimates by adding the dependence on system parameters, and noting that the nonlinear nature of warp propagation in a thin viscous disc affects alignment. This reduces the discs ability to communicate the warp, and can severely reduce the effectiveness of disc-assisted spin alignment. We test our predictions with a Monte Carlo realization of random misalignments and accretion rates and we find that the outcome depends strongly on the spin magnitude. We estimate a generous upper limit to the probability of alignment by making assumptions which favour it throughout. Even with these assumptions, about 40% of black holes with $a gtrsim 0.5$ do not have time to align with the disc. If the residual misalignment is not small and it is maintained down to the final coalescence phase this can give a powerful recoil velocity to the merged hole. Highly spinning black holes are thus more likely of being subject to strong recoils, the occurrence of which is currently debated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا