No Arabic abstract
We analyse the phase-space structure of simulated thick discs that are the result of a significant merger between a disc galaxy and a satellite. Our main goal is to establish what would be the characteristic imprints of a merger origin for the Galactic thick disc. We find that the spatial distribution predicted for thick disc stars is asymmetric, seemingly in agreement with recent observations of the Milky Way thick disc. Near the Sun, the accreted stars are expected to rotate more slowly, to have broad velocity distributions, and to occupy preferentially the wings of the line-of-sight velocity distributions. The majority of the stars in our model thick discs have low eccentricity orbits (in clear reference to the pre-existing heated disc) which gives rise to a characteristic (sinusoidal) pattern for their line of sight velocities as function of galactic longitude. The z-component of the angular momentum of thick disc stars provides a clear discriminant between stars from the pre-existing disc and those from the satellite, particularly at large radii. These results are robust against the particular choices of initial conditions made in our simulations, and thus provide clean tests of the disc heating via a minor merger scenario for the formation of thick discs.
We present simulations of the formation of thick disks via the accretion of two-component satellites onto a pre-existing thin disk. Our goal is to establish the detailed characteristics of the thick disks obtained in this way, as well as their dependence on the initial orbital and internal properties of the accreted objects. We find that mergers with 10-20% mass of the mass of the host lead to the formation of thick disks whose characteristics are similar, both in morphology as in kinematics, to those observed. Despite the relatively large mass ratios, the host disks are not fully destroyed by the infalling satellites: a remaining kinematically cold and thin component containing ~15-25% of the mass can be identified, which is embedded in a hotter and thicker disk. This may for example, explain the existence of a very old thin disk stars in the Milky Way. The final scale-heights of the disks depend both on the initial inclination and properties of the merger, but the fraction of satellite stellar particles at ~4 scale-heights directly measures the mass ratio between the satellite and host galaxy. Our thick disks typically show boxy isophotes at very low surface brightness levels (>6 magnitudes below their peak value). Kinematically, the velocity ellipsoids of the simulated thick disks are similar to that of the Galactic thick disk at the solar radius. The trend of sigma_Z/sigma_R with radius is found to be a very good discriminant of the initial inclination of the accreted satellite. In the Milky Way, the possible existence of a vertical gradient in the rotational velocity of the thick disk as well as the observed value of sigma_Z/sigma_R at the solar vicinity appear to favour the formation of the thick disk by a merger with either low or intermediate orbital inclination.
Although thick stellar discs are detected in nearly all edge-on disc galaxies, their formation scenarios still remain a matter of debate. Due to observational difficulties, there is a lack of information about their stellar populations. Using the Russian 6-m telescope BTA we collected deep spectra of thick discs in three edge-on S0-a disc galaxies located in different environments: NGC4111 in a dense group, NGC4710 in the Virgo cluster, and NGC5422 in a sparse group. We see intermediate age (4-5 Gyr) metal rich ([Fe/H] $sim$ -0.2 - 0.0 dex) stellar populations in NGC4111 and NGC4710. On the other hand, NGC5422 does not harbour young stars, its disc is thick and old (10 Gyr), without evidence for a second component, and its $alpha$-element abundance suggests a 1.5-2 Gyr long formation epoch implying its formation at high redshift. Our results suggest the diversity of thick disc formation scenarios.
We study the effect of dissipational gas physics on the vertical heating and thickening of disc galaxies during minor mergers. We produce a suite of minor merger simulations for Milky Way-like galaxies. This suite consists of collisionless simulations as well as hydrodynamical runs including a gaseous component in the galactic disc. We find that in dissipationless simulations minor mergers cause the scale height of the disc to increase by up to a factor of ~2. When the presence of gas in the disc is taken into account this thickening is reduced by 25% (50%) for an initial disc gas fraction of 20% (40%), leading to a final scale height z0 between 0.6 and 0.7 kpc, regardless of the initial scale height. We argue that the presence of gas reduces disc heating via two mechanisms: absorption of kinetic impact energy by the gas and/or formation of a new thin stellar disc that can cause heated stars to recontract towards the disc plane. We show that in our simulations most of the gas is consumed during the merger and thus the regrowth of a new thin disc has a negligible impact on the z0 of the post merger galaxy. Final disc scale heights found in our simulations are in good agreement with studies of the vertical structure of spiral galaxies where the majority of the systems are found to have scale heights of 0.4 kpc < z0 < 0.8 kpc. We also found no tension between recent measurements of the scale height of the Milky Way thin disc and results coming from our hydrodynamical simulations. We conclude that the existence of a thin disc in the Milky Way and in external galaxies is not in obvious conflict with the predictions of the CDM model.
The stellar disk of the Milky Way shows complex spatial and abundance structure that is central to understanding the key physical mechanisms responsible for shaping our Galaxy. In this study, we use six very high resolution cosmological zoom simulations of Milky Way-sized haloes to study the prevalence and formation of chemically distinct disc components. We find that our simulations develop a clearly bimodal distribution in the $[rm alpha/Fe]$ -- $[rm Fe/H]$ plane. We find two main pathways to creating this dichotomy which operate in different regions of the galaxies: a) an early ($z>1$) and intense high-$rm[alpha/Fe]$ star formation phase in the inner region ($Rlesssim 5$ kpc) induced by gas-rich mergers, followed by more quiescent low-$rm[alpha/Fe]$ star formation; and b) an early phase of high-$rm[alpha/Fe]$ star formation in the outer disc followed by a shrinking of the gas disc owing to a temporarily lowered gas accretion rate, after which disc growth resumes. In process b), a double-peaked star formation history around the time and radius of disc shrinking accentuates the dichotomy. If the early star formation phase is prolonged (rather than short and intense), chemical evolution proceeds as per process a) in the inner region, but the dichotomy is less clear. In the outer region, the dichotomy is only evident if the first intense phase of star formation covers a large enough radial range before disc shrinking occurs; otherwise, the outer disc consists of only low-$rm[alpha/Fe]$ sequence stars. We discuss the implication that both processes occurred in the Milky Way.
We present a statistical analysis of flybys of dark matter halos compared to mergers using cosmological $N$-body simulations. We mainly focus on gravitationally interacting target halos with mass of $10^{10.8}-10^{13.0}h^{-1}M_{odot}$, and their neighbors are counted only when the mass ratio is 1:3$-$3:1 and the distance is less than the sum of the virial radii of target and neighbor. The neighbors are divided into the flyby or merger samples if the pairs total energy is greater or smaller, respectively, than the capture criterion with consideration of dynamical friction. The main results are as follows: (a) The flyby fraction increases by up to a factor of 50 with decreasing halo mass and by up to a factor of 400 with increasing large-scale density, while the merger fraction does not show any significant dependencies on these two parameters; (b) The redshift evolution of the flyby fraction is twofold, increasing with redshift at $0<z<1$ and remaining constant at $z>1$, while the merger fraction increases monotonically with redshift at $z=0sim4$; (c) The multiple interactions with two or more neighbors are on average flyby-dominated, and their fraction has a mass and environment dependence similar to that for the flyby fraction; (d) Given that flybys substantially outnumber mergers toward $z=0$ (by a factor of five) and the multiple interactions are flyby-dominated, the flybys contribution to galactic evolution is stronger than ever at the present epoch, especially for less massive halos and in the higher density environment. We propose a scenario that connects the evolution of the flyby and merger fractions to the hierarchical structure formation process.