Do you want to publish a course? Click here

A Simple Sequential Spectrum Sensing Scheme for Cognitive Radio

423   0   0.0 ( 0 )
 Added by Yan Xin
 Publication date 2009
and research's language is English




Ask ChatGPT about the research

Cognitive radio that supports a secondary and opportunistic access to licensed spectrum shows great potential to dramatically improve spectrum utilization. Spectrum sensing performed by secondary users to detect unoccupied spectrum bands, is a key enabling technique for cognitive radio. This paper proposes a truncated sequential spectrum sensing scheme, namely the sequential shifted chi-square test (SSCT). The SSCT has a simple test statistic and does not rely on any deterministic knowledge about primary signals. As figures of merit, the exact false-alarm probability is derived, and the miss-detection probability as well as the average sample number (ASN) are evaluated by using a numerical integration algorithm. Corroborating numerical examples show that, in comparison with fixed-sample size detection schemes such as energy detection, the SSCT delivers considerable reduction on the ASN while maintaining a comparable detection performance.



rate research

Read More

Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks.
In this paper, a new cooperation structure for spectrum sensing in cognitive radio networks is proposed which outperforms the existing commonly-used ones in terms of energy efficiency. The efficiency is achieved in the proposed design by introducing random interruptions in the cooperation process between the sensing nodes and the fusion center, along with a compensation process at the fusion center. Regarding the hypothesis testing problem concerned, first, the proposed system behavior is thoroughly analyzed and its associated likelihood-ratio test (LRT) is provided. Next, based on a general linear fusion rule, statistics of the global test summary are derived and the sensing quality is characterized in terms of the probability of false alarm and the probability of detection. Then, optimization of the overall detection performance is formulated according to the Neyman-Pearson criterion (NPC) and it is discussed that the optimization required is indeed a decision-making process with uncertainty which incurs prohibitive computational complexity. The NPC is then modified to achieve a good affordable solution by using semidefinite programming (SDP) techniques and it is shown that this new solution is nearly optimal according to the deflection criterion. Finally, effectiveness of the proposed architecture and its associated SDP are demonstrated by simulation results.
Spectrum sensing is an essential functionality that enables cognitive radios to detect spectral holes and opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. Since individual cognitive radios might not be able to reliably detect weak primary signals due to channel fading/shadowing, this paper proposes a cooperative wideband spectrum sensing scheme, referred to as spatial-spectral joint detection, which is based on a linear combination of the local statistics from spatially distributed multiple cognitive radios. The cooperative sensing problem is formulated into an optimization problem, for which suboptimal but efficient solutions can be obtained through mathematical transformation under practical conditions.
Secondary access to the licensed spectrum is viable only if interference is avoided at the primary system. In this regard, different paradigms have been conceptualized in the existing literature. Of these, Interweave Systems (ISs) that employ spectrum sensing have been widely investigated. Baseline models investigated in the literature characterize the performance of IS in terms of a sensing-throughput tradeoff, however, this characterization assumes the knowledge of the involved channels at the secondary transmitter, which is unavailable in practice. Motivated by this fact, we establish a novel approach that incorporates channel estimation in the system model, and consequently investigate the impact of imperfect channel estimation on the performance of the IS. More particularly, the variation induced in the detection probability affects the detectors performance at the secondary transmitter, which may result in severe interference at the primary users. In this view, we propose to employ average and outage constraints on the detection probability, in order to capture the performance of the IS. Our analysis reveals that with an appropriate choice of the estimation time determined by the proposed model, the degradation in performance of the IS can be effectively controlled, and subsequently the achievable secondary throughput can be significantly enhanced.
Spectrum sensing is one of the enabling functionalities for cognitive radio (CR) systems to operate in the spectrum white space. To protect the primary incumbent users from interference, the CR is required to detect incumbent signals at very low signal-to-noise ratio (SNR). In this paper, we present a spectrum sensing technique based on correlating spectra for detection of television (TV) broadcasting signals. The basic strategy is to correlate the periodogram of the received signal with the a priori known spectral features of the primary signal. We show that according to the Neyman-Pearson criterion, this spectral correlation-based sensing technique is asymptotically optimal at very low SNR and with a large sensing time. From the system design perspective, we analyze the effect of the spectral features on the spectrum sensing performance. Through the optimization analysis, we obtain useful insights on how to choose effective spectral features to achieve reliable sensing. Simulation results show that the proposed sensing technique can reliably detect analog and digital TV signals at SNR as low as -20 dB.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا