Do you want to publish a course? Click here

Spatial-Spectral Joint Detection for Wideband Spectrum Sensing in Cognitive Radio Networks

403   0   0.0 ( 0 )
 Added by Zhi Quan
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

Spectrum sensing is an essential functionality that enables cognitive radios to detect spectral holes and opportunistically use under-utilized frequency bands without causing harmful interference to primary networks. Since individual cognitive radios might not be able to reliably detect weak primary signals due to channel fading/shadowing, this paper proposes a cooperative wideband spectrum sensing scheme, referred to as spatial-spectral joint detection, which is based on a linear combination of the local statistics from spatially distributed multiple cognitive radios. The cooperative sensing problem is formulated into an optimization problem, for which suboptimal but efficient solutions can be obtained through mathematical transformation under practical conditions.



rate research

Read More

Spectrum sensing is an essential enabling functionality for cognitive radio networks to detect spectrum holes and opportunistically use the under-utilized frequency bands without causing harmful interference to legacy networks. This paper introduces a novel wideband spectrum sensing technique, called multiband joint detection, which jointly detects the signal energy levels over multiple frequency bands rather than consider one band at a time. The proposed strategy is efficient in improving the dynamic spectrum utilization and reducing interference to the primary users. The spectrum sensing problem is formulated as a class of optimization problems in interference limited cognitive radio networks. By exploiting the hidden convexity in the seemingly non-convex problem formulations, optimal solutions for multiband joint detection are obtained under practical conditions. Simulation results show that the proposed spectrum sensing schemes can considerably improve the system performance. This paper establishes important principles for the design of wideband spectrum sensing algorithms in cognitive radio networks.
In this paper, a new cooperation structure for spectrum sensing in cognitive radio networks is proposed which outperforms the existing commonly-used ones in terms of energy efficiency. The efficiency is achieved in the proposed design by introducing random interruptions in the cooperation process between the sensing nodes and the fusion center, along with a compensation process at the fusion center. Regarding the hypothesis testing problem concerned, first, the proposed system behavior is thoroughly analyzed and its associated likelihood-ratio test (LRT) is provided. Next, based on a general linear fusion rule, statistics of the global test summary are derived and the sensing quality is characterized in terms of the probability of false alarm and the probability of detection. Then, optimization of the overall detection performance is formulated according to the Neyman-Pearson criterion (NPC) and it is discussed that the optimization required is indeed a decision-making process with uncertainty which incurs prohibitive computational complexity. The NPC is then modified to achieve a good affordable solution by using semidefinite programming (SDP) techniques and it is shown that this new solution is nearly optimal according to the deflection criterion. Finally, effectiveness of the proposed architecture and its associated SDP are demonstrated by simulation results.
457 - Yan Xin , Honghai Zhang 2009
Cognitive radio that supports a secondary and opportunistic access to licensed spectrum shows great potential to dramatically improve spectrum utilization. Spectrum sensing performed by secondary users to detect unoccupied spectrum bands, is a key enabling technique for cognitive radio. This paper proposes a truncated sequential spectrum sensing scheme, namely the sequential shifted chi-square test (SSCT). The SSCT has a simple test statistic and does not rely on any deterministic knowledge about primary signals. As figures of merit, the exact false-alarm probability is derived, and the miss-detection probability as well as the average sample number (ASN) are evaluated by using a numerical integration algorithm. Corroborating numerical examples show that, in comparison with fixed-sample size detection schemes such as energy detection, the SSCT delivers considerable reduction on the ASN while maintaining a comparable detection performance.
A new form of multiuser diversity, named emph{multiuser interference diversity}, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.
Compressive subspace learning (CSL) with the exploitation of space diversity has found a potential performance improvement for wideband spectrum sensing (WBSS). However, previous works mainly focus on either exploiting antenna auto-correlations or adopting a multiple-input multiple-output (MIMO) channel without considering the spatial correlations, which will degrade their performances. In this paper, we consider a spatially correlated MIMO channel and propose two CSL algorithms (i.e., mCSLSACC and vCSLACC) which exploit antenna cross-correlations, where the mCSLSACC utilizes an antenna averaging temporal decomposition, and the vCSLACC uses a spatial-temporal joint decomposition. For both algorithms, the conditions of statistical covariance matrices (SCMs) without noise corruption are derived. Through establishing the singular value relation of SCMs in statistical sense between the proposed and traditional CSL algorithms, we show the superiority of the proposed CSL algorithms. By further depicting the receiving correlation matrix of MIMO channel with the exponential correlation model, we give important closed-form expressions for the proposed CSL algorithms in terms of the amplification of singular values over traditional CSL algorithms. Such expressions provide a possibility to determine optimal algorithm parameters for high system performances in an analytical way. Simulations validate the correctness of this work and its performance improvement over existing works in terms of WBSS performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا