Do you want to publish a course? Click here

Star Formation History of Dwarf Galaxies in Cosmological Hydrodynamic Simulations

231   0   0.0 ( 0 )
 Added by Kentaro Nagamine
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We examine the past and current work on the star formation (SF) histories of dwarf galaxies in cosmological hydrodynamic simulations. The results obtained from different numerical methods are still somewhat mixed, but the differences are understandable if we consider the numerical and resolution effects. It remains a challenge to simulate the episodic nature of SF history in dwarf galaxies at late times within the cosmological context of a cold dark matter model. More work is needed to solve the mysteries of SF history of dwarf galaxies employing large-scale hydrodynamic simulations on the next generation of supercomputers.



rate research

Read More

120 - Jun-Hwan Choi 2009
We investigate the effects of the change of cosmological parameters and star formation (SF) models on the cosmic SF history using cosmological smoothed particle hydrodynamics (SPH) simulations based on the cold dark matter (CDM) model. We vary the cosmological parameters within 1-sigma error from the WMAP best-fit parameters, and find that such changes in cosmological parameters mostly affect the amplitude of the cosmic SF history. At high redshift (hereafter high-z), the star formation rate (SFR) is sensitive to the cosmological parameters that control the small-scale power of the primordial power spectrum, while the cosmic matter content becomes important at lower redshifts. We also test two new SF models: 1) the `Pressure model based on the work by Schaye & Dalla Vecchia (2008), and 2) the `Blitz model that takes the effect of molecular hydrogen formation into account, based on the work by Blitz & Rosolowsky (2006). Compared to the previous conventional SF model, the Pressure model reduces the SFR in low-density regions and shows better agreement with the observations of the Kennicutt-Schmidt law. This model also suppresses the early star formation and shifts the peak of the cosmic SF history toward lower redshift, more consistently with the recent observational estimates of cosmic SFR density. The simulations with the new SF model also predict lower global stellar mass densities at high-z, larger populations of low-mass galaxies and a higher gas fraction in high-z galaxies. Our results suggest that there is room left in the model uncertainties to reconcile the discrepancy that was found between the theory and observations of cosmic SF history and stellar mass density. Nevertheless, our simulations still predict higher stellar mass densities than most of the observational estimates.
We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
If we are to develop a comprehensive and predictive theory of galaxy formation and evolution, it is essential that we obtain an accurate assessment of how and when galaxies assemble their stellar populations, and how this assembly varies with environment. There is strong observational support for the hierarchical assembly of galaxies, but our insight into this assembly comes from sifting through the resolved field populations of the surviving galaxies we see today, in order to reconstruct their star formation histories, chemical evolution, and kinematics. To obtain the detailed distribution of stellar ages and metallicities over the entire life of a galaxy, one needs multi-band photometry reaching solar-luminosity main sequence stars. The Hubble Space Telescope can obtain such data in the low-density regions of Local Group galaxies. To perform these essential studies for a fair sample of the Local Universe, we will require observational capabilities that allow us to extend the study of resolved stellar populations to much larger galaxy samples that span the full range of galaxy morphologies, while also enabling the study of the more crowded regions of relatively nearby galaxies. With such capabilities in hand, we will reveal the detailed history of star formation and chemical evolution in the universe.
We study the nature of rapidly star-forming galaxies at z=2 in cosmological hydrodynamic simulations, and compare their properties to observations of sub-millimetre galaxies (SMGs). We identify simulated SMGs as the most rapidly star-forming systems that match the observed number density of SMGs. In our models, SMGs are massive galaxies sitting at the centres of large potential wells, being fed by smooth infall and gas-rich satellites at rates comparable to their star formation rates (SFR). They are not typically undergoing major mergers that significantly boost their quiescent SFR, but they still often show complex gas morphologies and kinematics. Our simulated SMGs have stellar masses of log M*/Mo~11-11.7, SFRs of ~180-500 Mo/yr, a clustering length of 10 Mpc/h, and solar metallicities. The SFRs are lower than those inferred from far-IR data by a factor of 3, which we suggest may owe to one or more systematic effects in the SFR calibrations. SMGs at z=2 live in ~10^13 Mo halos, and by z=0 they mostly end up as brightest group galaxies in ~10^14 Mo halos. We predict that higher-M* SMGs should have on average lower specific SFRs, less disturbed morphologies, and higher clustering. We also predict that deeper far-IR surveys will smoothly join SMGs onto the massive end of the SFR-M* relationship defined by lower-mass z=2 galaxies. Overall, our simulated rapid star-formers provide as good a match to available SMG data as merger-based scenarios, offering an alternative scenario that emerges naturally from cosmological simulations.
We examine the global HI properties of galaxies in quarter-billion particle cosmological simulations using Gadget-2, focusing on how galactic outflows impact HI content. We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentum-driven outflows for larger galaxies and energy-driven outflows for dwarfs (sigma<75 km/s). To obtain predicted HI masses, we employ a simple but effective local correction for particle self-shielding, and an observationally-constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an HI mass function whose faint-end slope of -1.3 agrees well with observations from the ALFALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in HI fraction versus halo mass, with smaller satellites and/or those in larger halos more often being HI-deficient. At a given stellar mass, HI content correlates with star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive HI galaxies disappear and the mass function steepens. The global cosmic HI density conspires to remain fairly constant from z~5-0, but the relative contribution from smaller galaxies increases with redshift.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا