Do you want to publish a course? Click here

Constraining fundamental constants of physics with quasar absorption line systems

456   0   0.0 ( 0 )
 Added by Patrick Petitjean
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We summarize the attempts by our group and others to derive constraints on variations of fundamental constants over cosmic time using quasar absorption lines. Most upper limits reside in the range 0.5-1.5x10-5 at the 3sigma level over a redshift range of approximately 0.5-2.5 for the fine-structure constant, alpha, the proton-to-electron mass ratio, mu, and a combination of the proton gyromagnetic factor and the two previous constants, gp(alpha^2/mu)^nu, for only one claimed variation of alpha. It is therefore very important to perform new measurements to improve the sensitivity of the numerous methods to at least <0.1x10-5 which should be possible in the next few years. Future instrumentations on ELTs in the optical and/or ALMA, EVLA and SKA pathfinders in the radio will undoutedly boost this field by allowing to reach much better signal-to-noise ratios at higher spectral resolution and to perform measurements on molecules in the ISM of high redshift galaxies.



rate research

Read More

137 - Rodger I. Thompson 2013
The values of the fundamental constants such as $mu = m_P/m_e$, the proton to electron mass ratio and $alpha$, the fine structure constant, are sensitive to the product $sqrt{zeta_x^2(w+1)}$ where $zeta_x$ is a coupling constant between a rolling scalar field responsible for the acceleration of the expansion of the universe and the electromagnetic field with x standing for either $mu$ or $alpha$. The dark energy equation of state $w$ can assume values different than $-1$ in cosmologies where the acceleration of the expansion is due to a scalar field. In this case the value of both $mu$ and $alpha$ changes with time. The values of the fundamental constants, therefore, monitor the equation of state and are a valuable tool for determining $w$ as a function of redshift. In fact the rolling of the fundamental constants is one of the few definitive discriminators between acceleration due to a cosmological constant and acceleration due to a quintessence rolling scalar field. $w$ is often given in parameterized form for comparison with observations. In this manuscript the predicted evolution of $mu$, is calculated for a range of parameterized equation of state models and compared to the observational constraints on $Delta mu / mu$. We find that the current limits on $Delta mu / mu$ place significant constraints on linear equation of state models and on thawing models where $w$ deviates from $-1$ at late times. They also constrain non-dynamical models that have a constant $w$ not equal to $-1$. These constraints are an important compliment to geometric tests of $w$ in that geometric tests are sensitive to the evolution of the universe before the epoch of observation while fundamental constants are sensitive to the evolution of the universe after the observational epoch. Abstract truncated.
Many cosmological models invoke rolling scalar fields to account for the observed acceleration of the expansion of the universe. These theories generally include a potential V(phi) which is a function of the scalar field phi. Although V(phi) can be represented by a very diverse set of functions, recent work has shown the under some conditions, such as the slow roll conditions, the equation of state parameter w is either independent of the form of V(phi) or is part of family of solutions with only a few parameters. In realistic models of this type the scalar field couples to other sectors of the model leading to possibly observable changes in the fundamental constants such as the fine structure constant alpha and the proton to electron mass ratio mu. This paper explores the limits this puts on the validity of various cosmologies that invoke rolling scalar fields. We find that the limit on the variation of mu puts significant constraints on the product of a cosmological parameter w+1 times a new physics parameter zeta_mu^2, the coupling constant between mu and the rolling scalar field. Even when the cosmologies are restricted to very slow roll conditions either the value of zeta_mu must be at the lower end of or less than its expected values or the value of w+1 must be restricted to values vanishingly close to 0. This implies that either the rolling scalar field is very weakly coupled with the electromagnetic field, small zeta_mu, very weakly coupled with gravity, w+1 ~ 0 or both. These results stress that adherence to the measured invariance in mu is a very significant test of the validity of any proposed cosmology and any new physics it requires. The limits on the variation of mu also produces a significant tension with the reported changes in the value of alpha.
137 - Rodger I. Thompson 2017
The observed constraints on the variability of the proton to electron mass ratio $mu$ and the fine structure constant $alpha$ are used to establish constraints on the variability of the Quantum Chromodynamic Scale and a combination of the Higgs Vacuum Expectation Value and the Yukawa couplings. Further model dependent assumptions provide constraints on the Higgs VEV and the Yukawa couplings separately. A primary conclusion is that limits on the variability of dimensionless fundamental constants such as $mu$ and $alpha$ provide important constraints on the parameter space of new physics and cosmologies.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that likely exist in all quasars and could play a major role in feedback to galaxy evolution. Studying the variability in these BALs can help us understand the structure, evolution, and basic physical properties of these outflows. We are conducting a BAL monitoring program, which so far includes 163 spectra of 24 luminous quasars, covering time-scales from sim 1 week to 8 years in the quasar rest-frame. We investigate changes in both the CIV {lambda}1550 and SiIV {lambda}1400 BALs, and we report here on some of the results from this program.
153 - H. Fritzsch 2009
We discuss the fundamental constants of physics in the Standard Model and possible changes of these constants on the cosmological time scale. The Grand Unification of the strong, electromagnetic and weak interactions implies relations between the time variation of the finestructure constant and of the QCD scale. An experiment in quantum optics at the MPQ in Munich, which was designed to look for a time variation of the QCD scale, is discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا