Do you want to publish a course? Click here

The X-ray Power Spectral Density Function and Black Hole Mass Estimate for the Seyfert AGN IC 4329a

138   0   0.0 ( 0 )
 Added by Alex Markowitz
 Publication date 2009
  fields Physics
and research's language is English
 Authors A. Markowitz




Ask ChatGPT about the research

We present the X-ray broadband power spectral density function (PSD) of the X-ray-luminous Seyfert IC 4329a, constructed from light curves obtained via Rossi X-ray Timing Explorer monitoring and an XMM-Newton observation. Modeling the 3-10 keV PSD using a broken power-law PSD shape, a break in power-law slope is significantly detected at a temporal frequency of 2.5(+2.5,-1.7) * 10^-6 Hz, which corresponds to a PSD break time scale T_b of 4.6(+10.1,-2.3) days. Using the relation between T_b, black hole mass M_BH, and bolometric luminosity as quantified by McHardy and coworkers, we infer a black hole mass estimate of M_BH = 1.3(+1.0,-0.3) * 10^8 solar masses and an accretion rate relative to Eddington of 0.21(+0.06,-0.10) for this source. Our estimate of M_BH is consistent with other estimates, including that derived by the relation between M_BH and stellar velocity dispersion. We also present PSDs for the 10-20 and 20-40 keV bands; they lack sufficient temporal frequency coverage to reveal a significant break, but are consistent with the same PSD shape and break frequency as in the 3-10 keV band.



rate research

Read More

We present an analysis of the spectral properties observed in X-rays from active galactic nucleus BL Lacertae using RXTE, Suzaku, ASCA, BeppoSAX, and Swift observations. The total time covered by these observations is approximately 20 years. We show that this source undergoes X-ray spectral transitions from the low hard state (LHS) through the intermediate state (IS) to the high soft state (HSS) during these observations. During the RXTE observations (1997 -- 2001, {180 ks, for a total 145 datasets}), the source was approximately 75%, 20% and only 5 of the time in the IS, LHS, and HSS, respectively. We also used Swift observations (470 datasets, for a total 800 ks), which occurred during 12 years (2005 -- 2016), the (0.3 -- 200 keV) data of BeppoSAX (1997 -- 2000, 160 ks), and the (0.3 -- 10 keV) data of ASCA (1995 -- 1999, 160 ks). Two observations of Suzaku (2006, 2013; 50 ks) in combinations with long-term RXTE and Swift data-sets allow us to describe all spectral states of BL Lac. The spectra of BL Lac are well fitted by the bulk motion Comptonization (BMC) model for all spectral states. We have established the photon index saturation level, Gamma_{sat}=2.2+/-0.1, in the Gamma vs. mass accretion rate (Mdot) correlation. This Gamma-Mdot correlation allows us to estimate the black-hole (BH) mass in BL Lac to be M_{BH}~3x10^7 M_sol for a distance of 300 Mpc. For the BH mass estimate, we use the scaling method taking stellar-mass Galactic BHs 4U~1543--47 and GX~339--4 as reference sources. The Gamma-Mdot correlation revealed in BL Lac is similar to those in a number of stellar-mass Galactic BHs and two recently studied intermediate-mass extragalactic BHs. It clearly shows the correlation along with the very extended $Gamma$ saturation at ~ 2.2. This is robust observational evidence for the presence of a BH in BL Lac.
148 - Alex Markowitz 2010
We present the broadband X-ray power spectral density function (PSD) of the X-ray-luminous Seyfert 1.2 NGC 7469, measured from Rossi X-ray Timing Explorer monitoring data and two XMM-Newton observations. We find significant evidence for a turnover in the 2-10 keV PSD at a temporal frequency of 2.0(+3.0,-0.8)e-6 Hz or 1.0(+3.0,-0.6)e-6 Hz, depending on the exact form of the break (sharply-broken or slowly-bending power-law, respectively). The ``surrogate Monte Carlo method of Press et al. (1992) was used to map out the probability distributions of PSD model parameters and obtain reliable uncertainties (68 per cent confidence limits quoted here). The corresponding break time scale of 5.8 (+/- 3.5) days or 11.6(+17.5,-8.7) days, respectively, is consistent with the empirical relation between PSD break time scale, black hole mass and bolometric luminosity of McHardy et al. Compared to the 2-10 keV PSD, the 10-20 keV PSD has a much flatter shape at high temporal frequencies, and no PSD break is significantly detected, suggesting an energy-dependent evolution not unlike that exhibited by several Galactic black hole systems.
A calibration is made for the correlation between the X-ray Variability Amplitude (XVA) and Black Hole (BH) mass. The correlation for 21 reverberation-mapped Active Galactic Nuclei (AGN) appears very tight, with an intrinsic dispersion of 0.20 dex. The intrinsic dispersion of 0.27 dex can be obtained if BH masses are estimated from the stellar velocity dispersions. We further test the uncertainties of mass estimates from XVAs for objects which have been observed multiple times with good enough data quality. The results show that the XVAs derived from multiple observations change by a factor of 3. This means that BH mass uncertainty from a single observation is slightly worse than either reverberation-mapping or stellar velocity dispersion measurements; however BH mass estimates with X-ray data only can be more accurate if the mean XVA value from more observations is used. Applying this relation, the BH mass of RE J1034+396 is found to be $4^{+3}_{-2} times 10^6$ $M_{odot}$. The high end of the mass range follows the relationship between the 2$f_0$ frequencies of high-frequency QPO and the BH masses derived from the Galactic X-ray binaries. We also calculate the high-frequency constant $C= 2.37 M_odot$ Hz$^{-1}$ from 21 reverberation-mapped AGN. As suggested by Gierlinski et al., $M_{rm BH}=C/C_{rm M}$, where $C_{rm M}$ is the high-frequency variability derived from XVA. Given the similar shape of power-law dominated X-ray spectra in ULXs and AGN, this can be applied to BH mass estimates of ULXs. We discuss the observed QPO frequencies and BH mass estimates in the Ultra-Luminous X-ray source M82 X-1 and NGC 5408 X-1 and favor ULXs as intermediate mass BH systems (abridged).
This work presents the catalogue of optical spectral properties for all X-ray selected SPIDERS active galactic nuclei (AGN) up to SDSS DR14. SPIDERS (SPectroscopic IDentification of eROSITA Sources) is an SDSS-IV programme that is currently conducting optical spectroscopy of the counterparts to the X-ray selected sources detected in the ROSAT all-sky survey and the XMM-Newton slew survey in the footprint of the Extended Baryon Oscillation Spectroscopic Survey (eBOSS). The SPIDERS DR14 sample is the largest sample of X-ray selected AGN with optical spectroscopic follow-up to date. The catalogue presented here is based on a clean sample of 7344 2RXS ($rm bar{z}$ = 0.5) and 1157 XMM-Newton slew survey ($rm bar{z}$ = 0.4) type 1 AGN with spectroscopic coverage of the H$rm beta$ and/or MgII emission lines. Visual inspection results for each object in this sample are available from a combination of literature sources and the SPIDERS group, which provide both reliable redshifts and source classifications. The spectral regions around the H$rm beta$ and MgII emission lines have been fit in order to measure both line and continuum properties, estimate bolometric luminosities, and provide black hole mass estimates using the single-epoch (or photoionisation) method. The use of both H$rm beta$ and MgII allows black hole masses to be estimated up to z $rm simeq$ 2.5. A comparison is made between the spectral properties and black hole mass estimates derived from H$rm beta$ and MgII using the subsample of objects which have coverage of both lines in their spectrum. These results have been made publicly available as an SDSS-IV DR14 value added catalogue.
We study the X-ray properties of a sample of 14 optically-selected low-mass AGN whose masses lie within the range 1E5 -2E6 M(solar) with XMM-Newton. Only six of these low-mass AGN have previously been studied with sufficient quality X-ray data, thus, we more than double the number of low-mass AGN observed by XMM-Newton with the addition of our sample. We analyze their X-ray spectral properties and variability and compare the results to their more massive counterparts. The presence of a soft X-ray excess is detectable in all five objects which were not background dominated at 2-3 keV. Combined with previous studies, this gives a total of 8 low-mass AGN with a soft excess. The low-mass AGN exhibit rapid, short-term variability (hundreds to thousands of seconds) as well as long-term variability (months to years). There is a well-known anti-correlation between black hole mass and variability amplitude (normalized excess variance). Comparing our sample of low-mass AGN with this relation we find that all of our sample lie below an extrapolation of the linear relation. Such a flattening of the relation at low masses (below about 1E6 M(solar)) is expected if the variability in all AGN follows the same shape power spectrum with a break frequency that is dependent on mass. Finally, we also found two objects that show significant absorption in their X-ray spectrum, indicative of type 2 objects, although they are classified as type 1 AGN based on optical spectra.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا