Do you want to publish a course? Click here

Transient Turbulence in Taylor-Couette Flow

162   0   0.0 ( 0 )
 Added by Daniel Borrero
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recent studies have brought into question the view that at sufficiently high Reynolds number turbulence is an asymptotic state. We present the first direct observation of the decay of turbulent states in Taylor-Couette flow with lifetimes spanning five orders of magnitude. We also show that there is a regime where Taylor-Couette flow shares many of the decay characteristics observed in other shear flows, including Poisson statistics and the coexistence of laminar and turbulent patches. Our data suggest that characteristic decay times increase super-exponentially with increasing Reynolds number but remain bounded in agreement with the most recent data from pipe flow and with a recent theoretical model. This suggests that, contrary to the prevailing view, turbulence in linearly stable shear flows may be generically transient.



rate research

Read More

We study periodically driven Taylor-Couette turbulence, i.e. the flow confined between two concentric, independently rotating cylinders. Here, the inner cylinder is driven sinusoidally while the outer cylinder is kept at rest (time-averaged Reynolds number is $Re_i = 5 times 10^5$). Using particle image velocimetry (PIV), we measure the velocity over a wide range of modulation periods, corresponding to a change in Womersley number in the range $15 leq Wo leq 114$. To understand how the flow responds to a given modulation, we calculate the phase delay and amplitude response of the azimuthal velocity. In agreement with earlier theoretical and numerical work, we find that for large modulation periods the system follows the given modulation of the driving, i.e. the system behaves quasi-stationary. For smaller modulation periods, the flow cannot follow the modulation, and the flow velocity responds with a phase delay and a smaller amplitude response to the given modulation. If we compare our results with numerical and theoretical results for the laminar case, we find that the scalings of the phase delay and the amplitude response are similar. However, the local response in the bulk of the flow is independent of the distance to the modulated boundary. Apparently, the turbulent mixing is strong enough to prevent the flow from having radius-dependent responses to the given modulation.
Highly turbulent Taylor-Couette flow with spanwise-varying roughness is investigated experimentally and numerically (direct numerical simulations (DNS) with an immersed boundary method (IBM)) to determine the effects of the spacing and axial width $s$ of the spanwise varying roughness on the total drag and {on} the flow structures. We apply sandgrain roughness, in the form of alternating {rough and smooth} bands to the inner cylinder. Numerically, the Taylor number is $mathcal{O}(10^9)$ and the roughness width is varied between $0.47leq tilde{s}=s/d leq 1.23$, where $d$ is the gap width. Experimentally, we explore $text{Ta}=mathcal{O}(10^{12})$ and $0.61leq tilde s leq 3.74$. For both approaches the radius ratio is fixed at $eta=r_i/r_o = 0.716$, with $r_i$ and $r_o$ the radius of the inner and outer cylinder respectively. We present how the global transport properties and the local flow structures depend on the boundary conditions set by the roughness spacing $tilde{s}$. Both numerically and experimentally, we find a maximum in the angular momentum transport as function of $tilde s$. This can be atributed to the re-arrangement of the large-scale structures triggered by the presence of the rough stripes, leading to correspondingly large-scale turbulent vortices.
We create a highly controlled lab environment-accessible to both global and local monitoring-to analyse turbulent boiling flows and in particular their shear stress in a statistically stationary state. Namely, by precisely monitoring the drag of strongly turbulent Taylor-Couette flow (the flow in between two co-axially rotating cylinders, Reynolds number $textrm{Re}approx 10^6$) during its transition from non-boiling to boiling, we show that the intuitive expectation, namely that a few volume percent of vapor bubbles would correspondingly change the global drag by a few percent, is wrong. Rather, we find that for these conditions a dramatic global drag reduction of up to 45% occurs. We connect this global result to our local observations, showing that for major drag reduction the vapor bubble deformability is crucial, corresponding to Weber numbers larger than one. We compare our findings with those for turbulent flows with gas bubbles, which obey very different physics than vapor bubbles. Nonetheless, we find remarkable similarities and explain these.
We report the onset of elastic turbulence in a two-dimensional Taylor-Couette geometry using numerical solutions of the Oldroyd-B model, also performed at high Weissenberg numbers with the program OpenFOAM. Beyond a critical Weissenberg number, an elastic instability causes a supercritical transition from the laminar Taylor-Couette to a turbulent flow. The order parameter, the time average of secondary-flow strength, follows the scaling law $Phi propto (mathrm{Wi} -mathrm{Wi}_c)^{gamma}$ with $mathrm{Wi}_c=10$ and $gamma = 0.45$. The power spectrum of the velocity fluctuations shows a power-law decay with a characteristic exponent, which strongly depends on the radial position. It is greater than two, which we relate to the dimension of the geometry.
We study the nonlinear mode competition of various spiral instabilities in magnetised Taylor-Couette flow. The resulting finite-amplitude mixed-mode solution branches are tracked using the annular-parallelogram periodic domain approach developed by Deguchi & Altmeyer (2013). Mode competition phenomena are studied in both the anti-cyclonic and cyclonic Rayleigh-stable regimes. In the anti-cyclonic sub-rotation regime, with the inner cylinder rotating faster than the outer, Hollerbach, Teeluck & Rudiger (2010) found competing axisymmetric and non-axisymmetric magneto-rotational linearly unstable modes within the parameter range where experimental investigation is feasible. Here we confirm the existence of mode competition and compute the nonlinear mixed-mode solutions that result from it. In the cyclonic super-rotating regime, with the inner cylinder rotating slower than the outer, Deguchi (2017) recently found a non-axisymmetric purely hydrodynamic linear instability that coexists with the non-axisymmetric magneto-rotational instability discovered a little earlier by Rudiger, Schultz, Gellert & Stefani (2016). We show that nonlinear interactions of these instabilities give rise to rich pattern-formation phenomena leading to drastic angular momentum transport enhancement/reduction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا