Do you want to publish a course? Click here

Multiscale limit for finite-gap Sine-Gordon Solutions and Calculation of Topological Charge using Theta-functional Formulae

248   0   0.0 ( 0 )
 Added by Krishna Kaipa
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce the so-called multiscale limit for spectral curves, associated with real finite-gap Sine-Gordon solutions. This technique allows to solve the old problem of calculating the density of topological charge for real finite-gap Sine-Gordon solutions directly from the $theta$-functional formulas.



rate research

Read More

119 - P.G. Grinevich , K.V. Kaipa 2009
The most basic characteristic of x-quasiperiodic solutions u(x,t) of the sine-Gordon equation u_{tt}-u_{xx}+sin u=0 is the topological charge density denoted $bar n$. The real finite-gap solutions u(x,t) are expressed in terms of the Riemann theta-functions of a non-singular hyperelliptic curve $Gamma$ and a positive generic divisor D of degree g on $Gamma$, where the spectral data $(Gamma, D)$ must satisfy some reality conditions. The problem addressed in note is: to calculate $bar n$ directly from the theta-functional expressions for the solution u(x,t). The problem is solved here by introducing what we call the multiscale or elliptic limit of real finite-gap sine-Gordon solutions. We deform the spectral curve to a singular curve, for which the calculation of topological charges reduces to two special easier cases.
181 - A.S. Fokas , B. Pelloni 2009
We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a $2times 2$ matrix Riemann-Hilbert problem formulated in terms of both the Dirichlet and the Neumann boundary values on the boundary of a semistrip. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of the semistrip and constant along the bounded side; in this particular case we show that the jump matrices of the above Riemann-Hilbert problem can be expressed explicitly in terms of the width of the semistrip and the constant value of the solution along the bounded side. This Riemann-Hilbert problem has a unique solution.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differential equation by using an appropriate coordinate transformation. The Nikiforov-Uvarov method is used in the calculations to get an energy eigenvalue and and the wave functions. It is found that the results in the case of constant mass are in good agreement with the ones obtained in the literature.
Given a 3-dimensional Riemannian manifold (M,g), we investigate the existence of positive solutions of the nonlinear Klein-Gordon-Maxwell system and nonlinear Schroedinger-Maxwell system with subcritical nonlinearity. We prove that the number of one peak solutions depends on the topological properties of the manifold M, by means of the Lusternik Schnirelmann category.
We show that the number of solutions of Schroedinger Maxwell system on a smooth bounded domain in R^3 depends on the topological properties of the domain. In particular we consider the Lusternik-Schnirelmann category and the Poincare polynomial of the domain.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا