No Arabic abstract
We present an in-situ study of an optical lattice with tunneling and single lattice site resolution. This system provides an important step for realizing a quantum computer. The real-space images show the fluctuations of the atom number in each site. The sub-Poissonian distribution results from the approach to the Mott insulator state, combined with the dynamics of density-dependent losses, which result from the high densities of optical lattice experiments. These losses are clear from the shape of the lattice profile. Furthermore, we find that the lattice is not in the ground state despite the momentum distribution which shows the reciprocal lattice. These effects may well be relevant for other optical lattice experiments, past and future. The lattice beams are derived from a microlens array, resulting in lattice beams which are perfectly stable relative to one another.
A superconducting single-electron transistor (SSET) coupled to an anharmonic oscillator, e.g., a Josephson junction-L-C circuit, can drive the latter to a nonequilibrium photon number state. By biasing the SSET in a regime where the current is carried by a combination of inelastic quasiparticle tunneling and coherent Cooper-pair tunneling (Josephson quasiparticle cycle), cooling of the oscillator as well as a laser like enhancement of the photon number can be achieved. Here we show, that the cut-off in the quasiparticle tunneling rate due to the superconducting gap, in combination with the anharmonicity of the oscillator, may create strongly squeezed photon number distributions. For low dissipation in the oscillator nearly pure Fock states can be produced.
We theoretically analyze atom interferometry based on trapped ultracold atoms, and employ optimal control theory in order to optimize number squeezing and condensate trapping. In our simulations, we consider a setup where the confinement potential is transformed from a single to a double well, which allows to split the condensate. To avoid in the ensuing phase-accumulation stage of the interferometer dephasing due to the nonlinear atom-atom interactions, the atom number fluctuations between the two wells should be sufficiently low. We show that low number fluctuations (high number squeezing) can be obtained by optimized splitting protocols. Two types of solutions are found: in the Josephson regime we find an oscillatory tunnel control and a parametric amplification of number squeezing, while in the Fock regime squeezing is obtained solely due to the nonlinear coupling, which is transformed to number squeezing by peaked tunnel pulses. We study splitting and squeezing within the frameworks of a generic two-mode model, which allows us to study the basic physical mechanisms, and the multi-configurational time dependent Hartree for bosons method, which allows for a microscopic modeling of the splitting dynamics in realistic experiments. Both models give similar results, thus highlighting the general nature of these two solution schemes. We finally analyze our results in the context of atom interferometry.
We optimize number squeezing when splitting a mesoscopic Bose Einstein condensate. Applying optimal control theory to a realistic description of the condensate allowed us to identify a form of the splitting ramp which drastically outperforms the adiabatic splitting. The results can be interpreted in terms of a generic two-mode model mapped onto a parametric harmonic oscillator. This optimal route to squeezing paves the way to a much longer phase coherence and atom interferometry close to the Heisenberg limit.
We measured the relative phase of two Bose-Einstein condensates confined in an radio frequency induced double well potential on an atom chip. We observed phase coherence between the separated condensates for times up to 200 ms after splitting, a factor of 10 beyond the phase diffusion limit expected for a coherent state in our experimental conditions (20 ms). The enhanced coherence time is attributed to number squeezing of the initial state by a factor of 10. In addition, we demonstrated a rotationally sensitive (Sagnac) geometry for a guided atom interferometer by propagating the split condensates.
Throughout physics, stable composite objects are usually formed via attractive forces, which allow the constituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in a structured environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even for repulsive interactions. Here we report on the first observation of such an exotic bound state, comprised of a pair of ultracold atoms in an optical lattice. Consistent with our theoretical analysis, these repulsively bound pairs exhibit long lifetimes, even under collisions with one another. Signatures of the pairs are also recognised in the characteristic momentum distribution and through spectroscopic measurements. There is no analogue in traditional condensed matter systems of such repulsively bound pairs, due to the presence of strong decay channels. These results exemplify on a new level the strong correspondence between the optical lattice physics of ultracold bosonic atoms and the Bose-Hubbard model, a correspondence which is vital for future applications of these systems to the study of strongly correlated condensed matter systems and to quantum information.