Do you want to publish a course? Click here

Photon-Number Squeezing in Circuit Quantum Electrodynamics

177   0   0.0 ( 0 )
 Added by Michael Marthaler
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A superconducting single-electron transistor (SSET) coupled to an anharmonic oscillator, e.g., a Josephson junction-L-C circuit, can drive the latter to a nonequilibrium photon number state. By biasing the SSET in a regime where the current is carried by a combination of inelastic quasiparticle tunneling and coherent Cooper-pair tunneling (Josephson quasiparticle cycle), cooling of the oscillator as well as a laser like enhancement of the photon number can be achieved. Here we show, that the cut-off in the quasiparticle tunneling rate due to the superconducting gap, in combination with the anharmonicity of the oscillator, may create strongly squeezed photon number distributions. For low dissipation in the oscillator nearly pure Fock states can be produced.



rate research

Read More

142 - G. Romero , E. Solano , 2016
Superconducting circuits have become a leading quantum technology for testing fundamentals of quantum mechanics and for the implementation of advanced quantum information protocols. In this chapter, we revise the basic concepts of circuit network theory and circuit quantum electrodynamics for the sake of digital and analog quantum simulations of quantum field theories, relativistic quantum mechanics, and many-body physics, involving fermions and bosons. Based on recent improvements in scalability, controllability, and measurement, superconducting circuits can be considered as a promising quantum platform for building scalable digital and analog quantum simulators, enjoying unique and distinctive properties when compared to other advanced platforms as trapped ions, quantum photonics and optical lattices.
We introduce a circuit quantum electrodynamical setup for a single-photon transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block respectively enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.
Circuit quantum electrodynamics is one of the most promising platforms for efficient quantum simulation and computation. In recent groundbreaking experiments, the immense flexibility of superconducting microwave resonators was utilized to realize hyperbolic lattices that emulate quantum physics in negatively curved space. Here we investigate experimentally feasible settings in which a few superconducting qubits are coupled to a bath of photons evolving on the hyperbolic lattice. We compare our numerical results for finite lattices with analytical results for continuous hyperbolic space on the Poincar{e} disk. We find good agreement between the two descriptions in the long-wavelength regime. We show that photon-qubit bound states have a curvature-limited size. We propose to use a qubit as a local probe of the hyperbolic bath, for example by measuring the relaxation dynamics of the qubit. We find that, although the boundary effects strongly impact the photonic density of states, the spectral density is well described by the continuum theory. We show that interactions between qubits are mediated by photons propagating along geodesics. We demonstrate that the photonic bath can give rise to geometrically-frustrated hyperbolic quantum spin models with finite-range or exponentially-decaying interaction.
We consider a superconducting quantum point contact in a circuit quantum electrodynamics setup. We study three different configurations, attainable with current technology, where a quantum point contact is coupled galvanically to a coplanar waveguide resonator. Furthermore, we demonstrate that the strong and ultrastrong coupling regimes can be achieved with realistic parameters, allowing the coherent exchange between a superconducting quantum point contact and a quantized intracavity field.
With the introduction of superconducting circuits into the field of quantum optics, many novel experimental demonstrations of the quantum physics of an artificial atom coupled to a single-mode light field have been realized. Engineering such quantum systems offers the opportunity to explore extreme regimes of light-matter interaction that are inaccessible with natural systems. For instance the coupling strength $g$ can be increased until it is comparable with the atomic or mode frequency $omega_{a,m}$ and the atom can be coupled to multiple modes which has always challenged our understanding of light-matter interaction. Here, we experimentally realize the first Transmon qubit in the ultra-strong coupling regime, reaching coupling ratios of $g/omega_{m}=0.19$ and we measure multi-mode interactions through a hybridization of the qubit up to the fifth mode of the resonator. This is enabled by a qubit with 88% of its capacitance formed by a vacuum-gap capacitance with the center conductor of a coplanar waveguide resonator. In addition to potential applications in quantum information technologies due to its small size and localization of electric fields in vacuum, this new architecture offers the potential to further explore the novel regime of multi-mode ultra-strong coupling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا