Do you want to publish a course? Click here

Influence of a Feshbach resonance on the photoassociation of LiCs

194   0   0.0 ( 0 )
 Added by Johannes Deiglmayr
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate constants for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.



rate research

Read More

We demonstrate a p$-wave optical Feshbach resonance (OFR) using purely long-range molecular states of a fermionic isotope of ytterbium ^{171}Yb, following the proposition made by K. Goyal et al. [Phys. Rev. A 82, 062704 (2010)]. The p-wave OFR is clearly observed as a modification of a photoassociation rate for atomic ensembles at about 5 micro-Kelvins. A scattering phase shift variation of delta eta=0.022 rad is observed with an atom loss rate coefficient K=28.0*10^{-12} cm^3/s.
We present the first observation of ultracold LiCs molecules. The molecules are formed in a two-species magneto-optical trap and detected by two-photon ionization and time-of-flight mass spectrometry. The production rate coefficient is found to be in the range $10^{-18}unit{cm^3s^{-1}}$ to $10^{-16}unit{cm^3s^{-1}}$, at least an order of magnitude smaller than for other heteronuclear diatomic molecules directly formed in a magneto-optical trap.
We report the first observation of photoassociation to the 2(1)Sigma(g)(+) state of 85Rb2 . We have observed two vibrational levels (v=98, 99) below the 5s1/2+5p1/2 atomic limit and eleven vibrational levels (v=102-112) above it. The photoassociation---and subsequent spontaneous emission---occur predominantly between 15 and 20 Bohr in a region of internuclear distance best described as a transition between Hunds case (a) and Hunds case (c) coupling. The presence of a g-wave shape resonance in the collision of two ground-state atoms affects the photoassociation rate and lineshape of the J= 3 and 5 rotational levels.
We theoretically investigate the control of a magnetic Feshbach resonance using a bound-to-bound molecular transition driven by spatially modulated laser light. Due to the spatially periodic coupling between the ground and excited molecular states, there exists a band structure of bound states, which can uniquely be characterized by some extra bumps in radio-frequency spectroscopy. With the increasing of coupling strength, the series of bound states will cross zero energy and directly result in a number of scattering resonances, whose position and width can be conveniently tuned by the coupling strength of the laser light and the applied magnetic field (i.e., the detuning of the ground molecular state). In the presence of the modulated laser light, universal two-body bound states near zero-energy threshold still exist. However, compared with the case without modulation, the regime for such universal states is usually small. An unified formula which embodies the influence of the modulated coupling on the resonance width is given. The spatially modulated coupling also implies a local spatially varying interaction between atoms. Our work proposes a practical way of optically controlling interatomic interactions with high spatial resolution and negligible atomic loss.
We perform photoassociation spectroscopy in an ultracold $^{23}$Na-$^6$Li mixture to study the $c^3Sigma^+$ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line strength data from photoassociation loss measurements. An analysis of the vibrational line positions using near-dissociation expansions and a full potential fit is presented. This is the first observation of the $c^3Sigma^+$ potential, as well as photoassociation in the NaLi system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا