No Arabic abstract
We report the detection of a radial velocity companion to the extremely low mass white dwarf LP400-22. The radial velocity of the white dwarf shows variations with a semi-amplitude of 119 km/s and a 0.98776 day period, which implies a companion mass of M > 0.37 Msun. The optical photometry rules out a main sequence companion. Thus the invisible companion is another white dwarf or a neutron star. Using proper motion measurements and the radial velocity of the binary system, we find that it has an unusual Galactic orbit. LP400-22 is moving away from the Galactic center with a velocity of 396 km/s, which is very difficult to explain by supernova runaway ejection mechanisms. Dynamical interactions with a massive black hole like that in the Galactic center can in principle explain its peculiar velocity, if the progenitor was a triple star system comprised of a close binary and a distant tertiary companion. Until better proper motions become available, we consider LP400-22 to be most likely a halo star with a very unusual orbit.
We report on the results of a 4-year timing campaign of PSR~J2222$-0137$, a 2.44-day binary pulsar with a massive white dwarf (WD) companion, with the Nanc{c}ay, Effelsberg and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass $m_{p}=1.76,pm,0.06,M_odot$ and a WD mass $m_{c},=,1.293,pm,0.025, M_odot$. We also measure the rate of advance of periastron for this system, which is marginally consistent with the GR prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little ($< , 10^{-2} , M_odot$) mass accretion onto the neutron star (NS); hence, the current pulsar mass is, within uncertainties, its birth mass; the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR~J2222$-0137$ puts that system into a poorly tested parameter range.
Binaries harbouring millisecond pulsars enable a unique path to determine neutron star masses: radio pulsations reveal the motion of the neutron star, while that of the companion can be characterised through studies in the optical range. PSR J1012+5307 is a millisecond pulsar in a 14.5-h orbit with a helium-core white dwarf companion. In this work we present the analysis of an optical spectroscopic campaign, where the companion star absorption features reveal one of the lightest known white dwarfs. We determine a white dwarf radial velocity semi-amplitude of K_2 = 218.9 +- 2.2 km/s, which combined with that of the pulsar derived from the precise radio timing, yields a mass ratio of q=10.44+- 0.11. We also attempt to infer the white dwarf mass from observational constraints using new binary evolution models for extremely low-mass white dwarfs, but find that they cannot reproduce all observed parameters simultaneously. In particular, we cannot reconcile the radius predicted from binary evolution with the measurement from the photometric analysis (R_WD=0.047+-0.003 Rsun). Our limited understanding of extremely low-mass white dwarf evolution, which results from binary interaction, therefore comes as the main factor limiting the precision with which we can measure the mass of the white dwarf in this system. Our conservative white dwarf mass estimate of M_WD = 0.165 +- 0.015 Msun, along with the mass ratio enables us to infer a pulsar mass of M_NS = 1.72 +- 0.16 Msun. This value is clearly above the canonical 1.4 Msun, therefore adding PSR J1012+5307 to the growing list of massive millisecond pulsars.
We present TOI-1259Ab, a 1.0 Rjup gas giant planet transiting a 0.71 Rsun K-dwarf on a 3.48 day orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of approximately 1600 AU from the planet host. Transits are observed in nine TESS sector and are 2.7 per cent deep - among the deepest known - making TOI-1259Ab a promising target for atmospheric characterization. Our follow-up radial velocity measurements indicate a variability of semiamplitude K = 71 m/s, implying a planet mass of 0.44 Mjup. By fitting the spectral energy distribution of the white dwarf we derive a total age of 4.08 (+1.21 -0.53) Gyr for the system. The K-dwarfs light curve reveals a rotational variability with a period of 28 days, which implies a gyrochronology age broadly consistent with the white dwarfs total age.
We present the discovery of a white dwarf companion at 3.6 from GJ3346, a nearby ($pisim$42 mas) K star observed with SPHERE@VLT as part of an open time survey for faint companions to objects with significant proper motion discrepancies ($Deltamu$) between Gaia DR1 and Tycho-2. Syrius-like systems like GJ3346AB, which include a main sequence star and a white dwarf, can be difficult to detect because of the intrinsic faintness of the latter. They have, however, been found to be common contaminants for direct imaging searches. White dwarfs have in fact similar brightness to sub-stellar companions in the infrared, while being much brighter in the visible bands like those used by Gaia. Combining our observations with Gaia DR2 and with several additional archival data sets, we were able to fully constrain the physical properties of GJ3346B, such as its effective temperature (11$times$10$^3pm$500 K) as well as the cooling age of the system (648$pm$58 Myrs). This allowed us to better understand the system history and to partially explains the discrepancies previously noted in the age indicators for this objects. Although further investigation is still needed, it seems that GJ3346, which was previously classified as young, is in fact most likely to be older than 4 Gyrs. Finally, given that the mass (0.58$pm$0.01$M_{odot}$)} and separation (85 au) of GJ3346B are compatible with the observed $Deltamu$, this discovery represents a further confirmation of the potential of this kind of dynamical signatures as selection methods for direct imaging surveys targeting faint, sub-stellar companions.
We used the Tycho-Gaia Astrometric Solution catalogue, part of the Gaia Data Release 1, to search for candidate astrometric microlensing events expected to occur within the remaining lifetime of the Gaia satellite. Our search yielded one promising candidate. We predict that the nearby DQ type white dwarf LAWD 37 (WD 1142-645) will lens a background star and will reach closest approach on November 11th 2019 ($pm$ 4 days) with impact parameter $380pm10$ mas. This will produce an apparent maximum deviation of the source position of $2.8pm0.1$ mas. In the most propitious circumstance, Gaia will be able to determine the mass of LAWD 37 to $sim3%$. This mass determination will provide an independent check on atmospheric models of white dwarfs with helium rich atmospheres, as well as tests of white dwarf mass radius relationships and evolutionary theory.