Do you want to publish a course? Click here

Superconductivity at 23 K and Low Anisotropy in Rb-Substituted BaFe_2As_2 Single Crystals

237   0   0.0 ( 0 )
 Added by Stephen Weyeneth
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single crystals of Ba_{1-x}Rb_{x}Fe_2As_2 with x=0.05-0.1 have been grown from Sn flux and are bulk superconductors with T_c up to 23 K. The crystal structure was determined by X-ray diffraction analysis, and Sn is found to be incorporated for 9% Ba, shifted by 1.1 Angstroem away from the Ba site towards the (Fe_2As_2)-layers. The upper critical field deduced from resistance measurements is anisotropic with slopes of 7.1(3) T/K (H || ab-plane) and 4.2(2) T/K (H || c-axis), sufficiently far below T_c. The extracted upper critical field anisotropy of 3 close to T_c, is in good agreement with the estimate from magnetic torque measurements. This indicates that the electronic properties in the doped BaFe_2As_2 compound are significantly more isotropic than those in the LnFeAsO family. The in-plane critical current density at 5 K exceeds 10^6 A/cm^2, making Ba_{1-x}Rb_xFe_2As_2 a promising candidate for technical applications.



rate research

Read More

We report superconductivity in single crystals of the new iron-pnictide system BaFe1.9Pt0.1As2 grown by a self-flux solution method and characterized via x-ray, transport, magnetic and thermodynamic measurements. The magnetic ordering associated with a structural transition at 140 K present in BaFe2As2 is completely suppressed by substitution of 5% Fe with Pt and superconductivity is induced at a critical temperature Tc=23 K. Full diamagnetic screening in the magnetic susceptibility and a jump in the specific heat at Tc confirm the bulk nature of the superconducting phase. All properties of the superconducting state including transition temperature Tc, the lower critical field Hc1=200 mT, upper critical field Hc2~65 T, and the slope dHc2/dT are comparable in value to the those found in other transition-metal-substituted BaFe2As2 series, indicating the robust nature of superconductivity induced by substitution of Group VIII elements.
Single crystals of SrFe2-xPtxAs2 (0 < x < 0.36) were grown using the self flux solution method and characterized using x-ray crystallography, electrical transport, magnetic susceptibility, and specific heat measurements. The magnetic/structural transition is suppressed with increasing Pt concentration, with superconductivity seen over the range 0.08 < x < 0.36 with a maximum transition temperature Tc of 16 K at x = 0.16. The shape of the phase diagram and the changes to the lattice parameters are similar to the effects of other group VIII elements Ni and Pd, however the higher transition temperature and extended range of superconductivity suggest some complexity beyond the simple electron counting picture that has been discussed thus far.
The electrical resistivity rho(T) and heat capacity C(T) on single crystals of SrNi2As2 and EuNi2As2 are reported. While there is no evidence for a structural transition in either compound, SrNi2As2 is found to be a bulk superconductor at T_c=0.62 K with a Sommerfeld coefficient of gamma= 8.7 mJ/mol K^2 and a small upper critical field H_{c2} sim 200 Oe. No superconductivity was found in EuNi2As2 above 0.4 K, but anomalies in rho and C reveal that magnetic order associated with the Eu^{2+} magnetic moments occurs at T_m = 14 K.
Superconductors close to quantum phase transitions often exhibit a simultaneous increase of electronic correlations and superconducting transition temperatures. Typical examples are given by the recently discovered iron-based superconductors. We investigated the band-specific quasiparticle masses of AFe2As2 single crystals with A = K, Rb, and Cs and determined their pressure dependence. The evolution of electronic correlations could be tracked as a function of volume and hole doping. The results indicate that with increasing alkali-metal ion radius a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to suppress the superconductivity.
We have studied the intrinsic normal and superconducting properties of the oxypnictide LaFePO. These samples exhibit bulk superconductivity and the evidence suggests that stoichiometric LaFePO is indeed superconducting, in contrast to other reports. We find that superconductivity is independent of the interplane residual resistivity $rho_0$ and discuss the implications of this on the nature of the superconducting order parameter. Finally we find that, unlike $T_c$, other properties in single-crystal LaFePO including the resistivity and magnetoresistance, can be very sensitive to disorder.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا