Do you want to publish a course? Click here

Collision Thermalization of Nucleons in Relativistic Heavy-Ion Collisions

295   0   0.0 ( 0 )
 Added by Dmitry Anchishkin
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We consider a possible mechanism of thermalization of nucleons in relativistic heavy-ion collisions. Our model belongs, to a certain degree, to the transport ones; we investigate the evolution of the system created in nucleus-nucleus collision, but we parametrize this development by the number of collisions of every particle during evolution rather than by the time variable. We based on the assumption that the nucleon momentum transfer after several nucleon-nucleon (-hadron) elastic and inelastic collisions becomes a random quantity driven by a proper distribution. This randomization results in a smearing of the nucleon momenta about their initial values and, as a consequence, in their partial isotropization and thermalization. The trial evaluation is made in the framework of a toy model. We show that the proposed scheme can be used for extraction of the physical information from experimental data on nucleon rapidity distribution.



rate research

Read More

We propose a model for isotropization and corresponding thermalization in a nucleon system created in the collision of two nuclei. The model is based on the assumption: during the fireball evolution, two-particle elastic and inelastic collisions give rise to the randomization of the nucleon-momentum transfer which is driven by a proper distribution. As a first approximation, we assume a homogeneous distribution where the values of the momentum transfer is bounded from above. These features have been shown to result in a smearing of the particle momenta about their initial values and, as a consequence, in their partial isotropization and thermalization. The nonequilibrium single-particle distribution function and single-particle spectrum which carry a memory about initial state of nuclei have been obtained.
102 - S. Zhang , Y. G. Ma , G. L. Ma 2020
Initial geometrical distribution and fluctuation can affect the collective expansion in relativistic heavy-ion collisions. This effect may be more evident in small system (such as B + B) than in large one (Pb + Pb). This work presents the collision system dependence of collective flows and discusses about effects on collective flows from initial fluctuations in a framework of a multiphase transport model. The results shed light on system scan on experimental efforts to small system physics.
We propose a mechanism of thermalization of nucleons in relativistic nucleus-nucleus collisions. Our model belongs, to a certain degree, to the transport ones; we consider the evolution of the system, but we parametrize this development by the number of collisions of every particle in the system rather than by the time variable. We based on the assumption that the nucleon momentum transfer after several nucleon-nucleon (-hadron) collisions becomes a random quantity driven by a proper distribution.
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor $R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{NN}}$ =200 GeV and to the ALICE data for Pb+Pb collisions at $sqrt{s_{NN}}$ =2.76 TeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $R_{AA}$ versus $p_T$ reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.
Despite the fact that a system created in relativistic heavy ion collisions is an isolated quantum system, which cannot increase its entropy in the course of unitary quantum evolution, hydrodynamical analysis of experimental data seems to indicate that the matter formed in the collisions is thermalized very quickly. Based on common consideration of hydrodynamics as an effective theory in the domain of slow- and long-length modes, we discuss the physical mechanisms responsible for the decoherence and emergence of the hydrodynamic behavior in such collisions, and demonstrate how such physical mechanisms work in the case of the scalar field model. We obtain the evolution equation for the Wigner function of a long-wavelength subsystem that describes its decoherence, isotropization, and approach to thermal equilibrium induced by interaction with short-wavelength modes. Our analysis supports the idea that decoherence, quantum-to-classical transition and thermalization in isolated quantum systems are attributed to the experimental context, and are related to a particular procedure of decomposition of the whole quantum system into relevant and irrelevant from an observational viewpoint subsystems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا