Do you want to publish a course? Click here

Heavy flavor in relativistic heavy-ion collisions

184   0   0.0 ( 0 )
 Added by Elena Bratkovskaya
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectrum and rapidity distribution of charm quarks from Fixed-Order Next-to-Leading Logarithm (FONLL) calculations. The produced charm quarks scatter in the quark-gluon plasma (QGP) with the off-shell partons whose masses and widths are given by the Dynamical Quasi-Particle Model (DQPM), which reproduces the lattice QCD equation-of-state in thermal equilibrium. The relevant cross sections are calculated in a consistent way by employing the effective propagators and couplings from the DQPM. Close to the critical energy density of the phase transition, the charm quarks are hadronized into $D$ mesons through coalescence and/or fragmentation. The hadronized $D$ mesons then interact with the various hadrons in the hadronic phase with cross sections calculated in an effective lagrangian approach with heavy-quark spin symmetry. The nuclear modification factor $R_{AA}$ and the elliptic flow $v_2$ of $D^0$ mesons from PHSD are compared with the experimental data from the STAR Collaboration for Au+Au collisions at $sqrt{s_{NN}}$ =200 GeV and to the ALICE data for Pb+Pb collisions at $sqrt{s_{NN}}$ =2.76 TeV. We find that in the PHSD the energy loss of $D$ mesons at high $p_T$ can be dominantly attributed to partonic scattering while the actual shape of $R_{AA}$ versus $p_T$ reflects the heavy-quark hadronization scenario, i.e. coalescence versus fragmentation. Also the hadronic rescattering is important for the $R_{AA}$ at low $p_T$ and enhances the $D$-meson elliptic flow $v_2$.



rate research

Read More

Heavy flavor probes are sensitive to the properties of the quark gluon plasma (QGP) produced in relativistic heavy-ion collisions. A huge amount of effort has been devoted to studying different aspects of the heavy-ion collisions using heavy flavor particles. In this work, we study the dynamics of heavy quark transport in the QGP medium using the rapidity dependence of heavy flavor observables. We calculate the nuclear modification of $text{B}$ and $text{D}$ meson spectra as well as spectra of leptons from heavy flavor decays in the rapidity range $[-4.0,4.0]$. We use an implementation of the improved Langevin equation with gluon radiation on top of a (3+1)-dimensional relativistic viscous hydrodynamical background for several collision setups. We find that the rapidity dependence of the heavy quark modification is determined by the interplay between the smaller size of the medium, which affects the path length of the heavy quarks, and the softer heavy quark initial production spectrum. We compare our results with available experimental data and present predictions for open heavy flavor meson $R_text{AA}$ at finite rapidity.
We study the single electron spectra from $D-$ and $B-$meson semileptonic decays in Au+Au collisions at $sqrt{s_{rm NN}}=$200, 62.4, and 19.2 GeV by employing the parton-hadron-string dynamics (PHSD) transport approach that has been shown to reasonably describe the charm dynamics at RHIC and LHC energies on a microscopic level. In this approach the initial heavy quarks are produced by using the PYTHIA which is tuned to reproduce the FONLL calculations. The produced heavy quarks interact with off-shell massive partons in QGP with scattering cross sections which are calculated in the dynamical quasi-particle model (DQPM). At energy densities close to the critical energy density the heavy quarks are hadronized into heavy mesons through either coalescence or fragmentation. After hadronization the heavy mesons interact with the light hadrons by employing the scattering cross sections from an effective Lagrangian. The final heavy mesons then produce single electrons through semileptonic decay. We find that the PHSD approach well describes the nuclear modification factor $R_{rm AA}$ and elliptic flow $v_2$ of single electrons in d+Au and Au+Au collisions at $sqrt{s_{rm NN}}=$ 200 GeV and the elliptic flow in Au+Au reactions at $sqrt{s_{rm NN}}=$ 62.4 GeV from the PHENIX collaboration, however, the large $R_{rm AA}$ at $sqrt{s_{rm NN}}=$ 62.4 GeV is not described at all. Furthermore, we make predictions for the $R_{rm AA}$ of $D-$mesons and of single electrons at the lower energy of $sqrt{s_{rm NN}}=$ 19.2 GeV. Additionally, the medium modification of the azimuthal angle $phi$ between a heavy quark and a heavy antiquark is studied. We find that the transverse flow enhances the azimuthal angular distributions close to $phi=$ 0 because the heavy flavors strongly interact with nuclear medium in relativistic heavy-ion collisions and almost flow with the bulk matter.
We develop for charmed hadron production in relativistic heavy-ion collisions a comprehensive coalescence model that includes an extensive set of $s$ and $p$-wave hadronic states as well as the strict energy-momentum conservation, which ensures the boost invariance of the coalescence probability and the thermal limit of the produced hadron spectrum. By combining our hadronization scheme with an advanced Langevin-hydrodynamics model that incorporates both elastic and inelastic energy loss of heavy quarks inside the dynamical quark-gluon plasma, we obtain a successful description of the $p_mathrm{T}$-integrated and differential $Lambda_c/D^0$ and $D_s/D^0$ ratios measured at RHIC and the LHC. We find that including the effect of radial flow of the medium is essential for describing the enhanced $Lambda_c/D^0$ ratio observed in relativistic heavy-ion collisions. We also find that the puzzling larger $Lambda_c/D^0$ ratio observed in Au+Au collisions at RHIC than in Pb+Pb collisions at the LHC is due to the interplay between the effects of the QGP radial flow and the charm quark transverse momentum spectrum at hadronization. Our study further suggests that charmed hadrons have larger sizes in medium than in vacuum.
413 - Shuai Y. F. Liu , Yifeng Sun , 2020
Based on a generalized side-jump formalism for massless chiral fermions, which naturally takes into account the spin-orbit coupling in the scattering of two chiral fermions and the chiral vortical effect in a rotating chiral fermion matter, we have developed a covariant and total angular momentum conserved chiral transport model to study both the global and local polarizations of this matter. For a system of massless quarks of random spin orientations and finite vorticity in a box, we have demonstrated that the model can exactly conserve the total angular momentum of the system and dynamically generate the quark spin polarization expected from a thermally equilibrated quark matter. Using this model to study the spin polarization in relativistic heavy-ion collision, we have found that the local quark spin polarizations depend strongly on the reference frame where they are evaluated as a result of the nontrivial axial charge distribution caused by the chiral vortical effect. We have further shown that because of the anomalous orbital or side-jump contribution to the quark spin polarization, the local quark polarizations calculated in the medium rest frame are qualitatively consistent with the local polarizations of Lambda hyperons measured in experiments.
176 - T. Osada , G. Wilk 2008
The nonextensive one-dimensional version of a hydrodynamical model for multiparticle production processes is proposed and discussed. It is based on nonextensive statistics assumed in the form proposed by Tsallis and characterized by a nonextensivity parameter $q$. In this formulation the parameter $q$ characterizes some specific form of local equilibrium which is characteristic for the nonextensive thermodynamics and which replaces the usual local thermal equilibrium assumption of the usual hydrodynamical models. We argue that there is correspondence between the perfect nonextensive hydrodynamics and the usual dissipative hydrodynamics. It leads to simple expression for dissipative entropy current and allows for predictions for the ratio of bulk and shear viscosities to entropy density, $zeta/s$ and $eta/s$, to be made.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا