Do you want to publish a course? Click here

Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE

235   0   0.0 ( 0 )
 Added by Felix F\\\"urst
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The evolution of the particle background at an altitude of ~540 km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASAs Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by ~1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3 deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earths magnetic field.



rate research

Read More

We present a study of the solar-cycle variations of >80 MeV proton flux intensities in the lower edge of the inner radiation belt, based on the measurements of the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) mission. The analyzed data sample covers an ~8 year interval from 2006 July to 2014 September, thus spanning from the decaying phase of the 23rd solar cycle to the maximum of the 24th cycle. We explored the intensity temporal variations as a function of drift shell and proton energy, also providing an explicit investigation of the solar-modulation effects at different equatorial pitch angles. PAMELA observations offer new important constraints for the modeling of low-altitude particle radiation environment at the highest trapping energies.
Chondrites are rocky fragments of asteroids that formed at different times and heliocentric distances in the early solar system. Most chondrite groups contain water-bearing minerals, attesting that both water-ice and dust were accreted on their parent asteroids. Nonetheless, the hydrogen isotopic composition (D/H) of water in the different chondrite groups remains poorly constrained, due to the intimate mixture of hydrated minerals and organic compounds, the other main H-bearing phase in chondrites. Building on our recent works using in situ secondary ion mass spectrometry analyses, we determined the H isotopic composition of water in a large set of chondritic samples (CI, CM, CO, CR, and C-ungrouped carbonaceous chondrites) and report that water in each group shows a distinct and unique D/H signature. Based on a comparison with literature data on bulk chondrites and their water and organics, our data do not support a preponderant role of parent-body processes in controlling the D/H variations among chondrites. Instead, we propose that the water and organic D/H signatures were mostly shaped by interactions between the protoplanetary disk and the molecular cloud that episodically fed the disk over several million years. Because the preservation of D-rich interstellar water and/or organics in chondritic materials is only possible below their respective sublimation temperatures (160 and 350-450 K), the H isotopic signatures of chondritic materials depend on both the timing and location at which their parent body formed.
It is known that the so-called problem of solar power pacemaker related to possible existence of some hidden but key mechanism of energy influence of the Sun on fundamental geophysical processes is one of the principal and puzzling problems of modern climatology. The tracks of this mechanism have been shown up in different problems of solar-terrestrial physics for a long time and, in particular, in climatology, where the solar-climate variability is stably observed. However, the mechanisms by which small changes in the Suns energy (solar irradiance or insolation) output during the solar cycle can cause change in the weather and climate are still unknown. We analyze possible causes of the solar-climate variability concentrating ones attention on the physical substantiation of strong correlation between the temporal variations of magnetic flux of the solar tachocline zone and the Earth magnetic field (Y-component). We propose an effective mechanism of solar dynamo-geodynamo connection which plays the role of the solar power pacemaker of the Earth global climate.
The scattering of fast radio bursts (FRBs) by the intergalactic medium (IGM) is explored using cosmological hydrodynamical simulations. We confirm that the scattering by the clumpy IGM has significant line-of-sight variations. We demonstrate that the scattering by the IGM in the voids and walls of the cosmic web is weak, but it can be significantly enhanced by the gas in clusters and filaments. The observed non-monotonic dependence of the FRB widths on the dispersion measures (DM) cannot determine whether the IGM is an important scattering matter or not. The IGM may dominate the scattering of some FRBs, and the host galaxy dominates others. For the former case, the scattering should be primarily caused by the medium in clusters. A mock sample of 500 sources shows that $tau_{rm{IGM}} propto rm{DM_{IGM}}^{1.6-2.1}$ at $z<1.5$. Assuming that the turbulence follows Kolmogorov scaling, we find that an outer scale of $L_0sim 5,$pc is required to make $tau_{rm{IGM}} sim 1-10,$ms at $ u=1, $ GHz. The required $L_0sim 5, $pc can alleviate the tension in the timescales of turbulent heating and cooling but is still $sim 4$ orders of magnitude lower than the presumed injection scale of turbulence in the IGM. The gap is expected to be effectively shortened if the simulation resolution is further increased. The mechanisms that may further reduce the gap are shortly discussed. If future observations can justify the role of the IGM in the broadening of FRBs, it can help to probe the gas in clusters and filaments.
A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This paper describes how the framework can be applied to ocean flows. Energy transfer between scales is not unique due to a gauge freedom. Here, it is argued that a Galilean invariant subfilter scale (SFS) flux is a suitable quantity to properly measure energy scale-transfer in the Ocean. It is shown that the SFS definition can yield answers that are qualitatively different from traditional measures that conflate spatial transport with the scale-transfer of energy. The paper presents geographic maps of the energy scale-transfer that are both local in space and allow quasi-spectral, or scale-by-scale, dynamics to be diagnosed. Utilizing a strongly eddying simulation of flow in the North Atlantic Ocean, it is found that an upscale energy transfer does not hold everywhere. Indeed certain regions, near the Gulf Stream and in the Equatorial Counter Current have a marked downscale transfer. Nevertheless, on average an upscale transfer is a reasonable mean description of the extra-tropical energy scale-transfer over regions of O(10^3) kilometers in size.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا