Do you want to publish a course? Click here

Mapping the Energy Cascade in the North Atlantic Ocean: The Coarse-graining Approach

96   0   0.0 ( 0 )
 Added by Hussein Aluie
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A coarse-graining framework is implemented to analyze nonlinear processes, measure energy transfer rates and map out the energy pathways from simulated global ocean data. Traditional tools to measure the energy cascade from turbulence theory, such as spectral flux or spectral transfer rely on the assumption of statistical homogeneity, or at least a large separation between the scales of motion and the scales of statistical inhomogeneity. The coarse-graining framework allows for probing the fully nonlinear dynamics simultaneously in scale and in space, and is not restricted by those assumptions. This paper describes how the framework can be applied to ocean flows. Energy transfer between scales is not unique due to a gauge freedom. Here, it is argued that a Galilean invariant subfilter scale (SFS) flux is a suitable quantity to properly measure energy scale-transfer in the Ocean. It is shown that the SFS definition can yield answers that are qualitatively different from traditional measures that conflate spatial transport with the scale-transfer of energy. The paper presents geographic maps of the energy scale-transfer that are both local in space and allow quasi-spectral, or scale-by-scale, dynamics to be diagnosed. Utilizing a strongly eddying simulation of flow in the North Atlantic Ocean, it is found that an upscale energy transfer does not hold everywhere. Indeed certain regions, near the Gulf Stream and in the Equatorial Counter Current have a marked downscale transfer. Nevertheless, on average an upscale transfer is a reasonable mean description of the extra-tropical energy scale-transfer over regions of O(10^3) kilometers in size.



rate research

Read More

In analogy with similar effects in adiabatic compressible fluid dynamics, the effects of buoyancy gradients on incompressible stratified flows are said to be `thermal. The thermal rotating shallow water (TRSW) model equations contain three small nondimensional parameters. These are the Rossby number, the Froude number and the buoyancy parameter. Asymptotic expansion of the TRSW model equations in these three small parameters leads to the deterministic therma
We construct a network from climate records of atmospheric temperature at surface level, at different geographical sites in the globe, using reanalysis data from years 1948-2010. We find that the network correlates with the North Atlantic Oscillation (NAO), both locally in the north Atlantic, and through coupling to the southern Pacific Ocean. The existence of tele-connection links between those areas and their stability over time allows us to suggest a possible physical explanation for this phenomenon.
An important class of fluid-structure problems involve the dynamics of ordered arrays of immersed, flexible fibers. While specialized numerical methods have been developed to study fluid-fiber systems, they become infeasible when there are many, rather than a few, fibers present, nor do these methods lend themselves to analytical calculation. Here, we introduce a coarse-grained continuum model, based on local-slender body theory, for elastic fibers immersed in a viscous Newtonian fluid. It takes the form of an anisotropic Brinkman equation whose skeletal drag is coupled to elastic forces. This model has two significant benefits: (1) the density effects of the fibers in a suspension become analytically manifest, and (2) it allows for the rapid simulation of dense suspensions of fibers in regimes inaccessible to standard methods. As a first validation, without fitting parameters, we achieve very reasonable agreement with 3D Immersed Boundary simulations of a bed of anchored fibers bent by a shear flow. Secondly, we characterize the effect of density on the relaxation time of fiber beds under oscillatory shear, and find close agreement to results from full numerical simulations. We then study buckling instabilities in beds of fibers, using our model both numerically and analytically to understand the role of fiber density and the structure of buckling transitions. We next apply our model to study the flow-induced bending of inclined fibers in a channel, as has been recently studied as a flow rectifier, examining the nature of the internal flows within the bed, and the emergence of inhomogeneous permeability. Finally, we extend the method to study a simple model of metachronal waves on beds of actuated fibers, as a model for ciliary beds. Our simulations reproduce qualitatively the pumping action of coordinated waves of compression through the bed.
We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with each other and with a trend that increases with the Taylor microscale Reynolds number, R_lambda, of up to about 1000 and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly all R_lambda, this being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly.
In this communication we address some hydrodynamic aspects of recently revisited drift mechanism of biogenic mixing in the ocean (Katija and Dabiri, Nature vol. 460, pp. 624-626, 2009). The relevance of the locomotion gait at various spatial scales with respect to the drift is discussed. A hydrodynamic scenario of the drift based on unsteady inertial propulsion, typical for most small marine organisms, is proposed. We estimate its effectiveness by taking into account interaction of a swimmer with the turbulent marine environment. Simple scaling arguments are derived to estimate the comparative role of drift-powered mixing with respect to the turbulence. The analysis indicates substantial biomixing effected by relatively small but numerous drifters, such as krill or jellyfish.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا