Do you want to publish a course? Click here

Surface superconducting states in yttrium hexaboride single crystal in a tilted magnetic field

158   0   0.0 ( 0 )
 Added by Menachem Tsindlekht
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of an experimental study of the nucleation of superconductivity at the surface of a single crystal YB$_6$ in a tilted dc magnetic field. A recently developed experimental technique allowed us to determine $H_{c3}$ at each side of the sample as a function of the angle between the dc magnetic field and the surface. Experiment shows that the ratio $H_{c3}/ H_{c2}approx 1.28 $ in the direction perpendicular to the surface dc field while according to the theory this ratio should be equal to 1. This sharp distinction cannot be ascribed to the surface roughness.



rate research

Read More

We report the low-frequency and tunneling studies of yttrium hexaboride single crystal. Ac susceptibility at frequencies 10 - 1500 Hz has been measured in parallel to the crystal surface DC felds, H0. We found that in the DC feld H0 > Hc2 DC magnetic moment completely disappears while the ac response exhibited the presence of superconductivity at the surface. Increasing of the DC field from Hc2 revealed the enlarging of losses with a maximum in the feld between Hc2 and Hc3. Losses at the maximum were considerably larger than in the mixed and in the normal states. The value of the DC field, where loss peak was observed, depends on the amplitude and frequency of the ac feld. Close to Tc this peak shifts below Hc2 which showed the coexistence of surface superconducting states and Abrikosov vortices. We observed a logarithmic frequency dependence of the in-phase component of the susceptibility. Such frequency dispersion of the inphase component resembles the response of spin-glass systems, but the out-of-phase component also exhibited frequency dispersion that is not a known feature of the classic spin-glass response. Analysis of the experimental data with Kramers-Kronig relations showed the possible existence of the loss peak at very low frequencies (< 5 Hz). We found that the amplitude of the third harmonic was not a cubic function of the ac amplitude even at considerably weak ac felds. This does not leave any room for treating the nonlinear effects on the basis of perturbation theory. We show that the conception of surface vortices or surface critical currents could not adequately describe the existing experimental data. Consideration of a model of slow relaxing nonequilibrium order parameter permits one to explain the partial shielding and losses of weak ac field for H0 > Hc2.
We utilize variational method to investigate the Kondo screening of a spin-1/2 magnetic impurity in tilted Dirac surface states with the Dirac cone tilted along the $k_y$-axis. We mainly study about the effect of the tilting term on the binding energy and the spin-spin correlation between magnetic impurity and conduction electrons, and compare the results with the counterparts in a two dimensional helical metal. The binding energy has a critical value while the Dirac cone is slightly tilted. However, as the tilting term increases, the density of states around the Fermi surface becomes significant, such that the impurity and the host material always favor a bound state. The diagonal and the off-diagonal terms of the spin-spin correlation between the magnetic impurity and conduction electrons are also studied. Due to the spin-orbit coupling and the tilting of the spectra, various components of spin-spin correlation show very strong anisotropy in coordinate space, and are of power-law decay with respect to the spatial displacements.
Many practical applications of high T$_c$ superconductors involve layered materials and magnetic fields applied on an arbitrary direction with respect to the layers. When the anisotropy is very large, Cooper pair currents can circulate either within or perpendicular to the layers. Thus, tilted magnetic fields lead to intertwined lattices of Josephson and Abrikosov vortices, with quantized circulation across and within layers, respectively. Transport in such intertwined lattices has been studied in detail, but direct observation and manipulation of vortices remains challenging. Here we present magnetic force microscopy experiments in tilted magnetic fields in the extremely quasi-two dimensional superconductor $Bi_{2}Sr_{2}CaCu_{2}O_{8}$. We trigger Abrikosov vortex motion in between Josephson vortices, and find that Josephson vortices in different layers can be brought on top of each other. Our measurements suggest that intertwined lattices in tilted magnetic fields can be intrinsically easy to manipulate thanks to the mutual interaction between Abrikosov and Josephson vortices.
We report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66 nm diameter holes having a lattice constant of 100 nm. The critical field transition of the Al films was measured near $T_c$ as a function of field orientation relative to the substrate normal. With the field oriented along the normal ($theta=0$), we observe reentrant superconductivity at a characteristic matching field $H_m=0.22,mathrm{T}$, corresponding to one flux quantum per hole. In tilted fields, the position $H^*$ of the reentrance feature increases as $sec(theta)$, but the resistivity traces are somewhat more complex than those of a continuous superconducting film. We show that when the tilt angle is tuned such that $H^*$ is of the order of the upper critical field $H_c$, the entire critical region is dominated by the enhanced dissipation associated with a sub-matching perpendicular component of the applied field. At higher tilt angles a local maximum in the critical field is observed when the perpendicular component of the field is equal to the matching field.
We report the in-plane resistivity and magnetic susceptibility of the layered cobalt oxide Na$_{0.35}$CoO$_{2}{cdot}1.3$H$_{2}$O single crystal. The temperature dependence of the resistivity shows metallic behavior from room temperature to the superconducting transition temperature $T_{c}$ of 4.5 K. Sharp resistive transition, zero resistivity and almost perfect superconducting volume fraction below $T_{c}$ indicate the good quality and the bulk superconductivity of the single crystal. The upper critical field $H_{c2}$ and the coherence length $xi$ are obtained from the resistive transitions in magnetic field parallel to the c-axis and the $ab$-plane. The anisotropy of $xi$, $xi_{ab} / xi_{c} =$ 12 nm/1.3 nm $simeq$ 9.2, suggests that this material is considered to be an anisotropic three dimensional superconductor. In the field parallel to the $ab$-plane, $H_{c2}$ seems to be suppressed to the value of Pauli paramagnetic limit. It may indicate the spin singlet superconductivity in the cobalt oxide.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا