Do you want to publish a course? Click here

Attractive interaction between superconducting vortices in tilted magnetic fields

92   0   0.0 ( 0 )
 Added by H. Suderow
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Many practical applications of high T$_c$ superconductors involve layered materials and magnetic fields applied on an arbitrary direction with respect to the layers. When the anisotropy is very large, Cooper pair currents can circulate either within or perpendicular to the layers. Thus, tilted magnetic fields lead to intertwined lattices of Josephson and Abrikosov vortices, with quantized circulation across and within layers, respectively. Transport in such intertwined lattices has been studied in detail, but direct observation and manipulation of vortices remains challenging. Here we present magnetic force microscopy experiments in tilted magnetic fields in the extremely quasi-two dimensional superconductor $Bi_{2}Sr_{2}CaCu_{2}O_{8}$. We trigger Abrikosov vortex motion in between Josephson vortices, and find that Josephson vortices in different layers can be brought on top of each other. Our measurements suggest that intertwined lattices in tilted magnetic fields can be intrinsically easy to manipulate thanks to the mutual interaction between Abrikosov and Josephson vortices.



rate research

Read More

Interaction between a Bloch wall in a ferrite-garnet film and a vortex in a superconductor is analyzed in the London approximation. Equilibrium distribution of vortices formed around the Bloch wall is calculated. The results agree quantitatively with magneto-optical experiment where an in-plane magnetized ferrite-garnet film placed on top of NbSe2 superconductor allows observation of individual vortices. In particular, our model can reproduce a counter-intuitive attraction observed between vortices and a Bloch wall having the opposite polarity. It is explained by magnetic charges appearing due to discontinuity of the in-plane magnetization across the wall.
93 - Maxime Leroux 2019
Non-linear electrical transport studies at high-pulsed magnetic fields, above the range accessible by DC magnets, are of direct fundamental relevance to the physics of superconductors, domain-wall, charge-density waves, and topological semi-metal. All-superconducting very-high field magnets also make it technologically relevant to study vortex matter in this regime. However, pulsed magnetic fields reaching 100 T in milliseconds impose technical and fundamental challenges that have prevented the realization of these studies. Here, we present a technique for sub-microsecond, smart, current-voltage measurements, which enables determining the superconducting critical current in pulsed magnetic fields, beyond the reach of any DC magnet. We demonstrate the excellent agreement of this technique with low DC field measurements on Y$_{0.77}$Gd$_{0.23}$Ba$_2$Cu$_3$O$_7$ coated conductors with and without BaHfO$_3$ nanoparticles. Exploring the uncharted high magnetic field region, we discover a characteristic influence of the magnetic field rate of change ($dH/dt$) on the current-voltage curves in a superconductor. We fully capture this unexplored vortex physics through a theoretical model based on the asymmetry of the vortex velocity profile produced by the applied current.
Recently, a homogeneous superfluid state with a single gapless Fermi surface was predicted to be the ground state of an ultracold Fermi gas with spin population imbalance in the regime of molecular Bose-Einstein condensation. We study vortices in this novel state using a symmetry-based effective field theory, which captures the low-energy physics of gapless fermions and superfluid phase fluctuations. This theory is applicable to all spin-imbalanced ultracold Fermi gases in the superfluid regime, regardless of whether the original fermion pairing interaction is weak or strong. We find a remarkable, unconventional form of the interaction between vortices. The presence of gapless fermions gives rise to a spatially oscillating potential, akin to the RKKY indirect-exchange interaction in non-magnetic metals. We compare the parameters of the effective theory to the experimentally measurable quantities and further discuss the conditions for the verification of the predicted new feature. Our study opens up an interesting question as to the nature of the vortex lattice resulting from the competition between the usual repulsive logarithmic (2D Coulomb) and predominantly attractive fermion-induced interactions.
Josephson current between two one-dimensional nanowires with proximity induced $p$-wave superconducting pairing is calculated in the presence of Rashba spin-orbit interaction, in-plane and normal magnetic fields. We show that Andreev retro-tunneling is realized by means of three channels. The main contribution to the Josephson current gives a scattering in a conventional particle-hole channel, when an electron-like quasiparticle reflects to a hole-like quasiparticle with opposite spin yielding a current which depends only on the order parameters phase differences $varphi$ and oscillates with $4pi$ period. Second anomalous particle-hole channel, corresponding to the Andreev reflection of an incident electron-like quasiparticle to an hole-like quasiparticle with the same spin orientation, survives only in the presence of the in-plane magnetic field. The contribution of this channel to the Josephson current oscillates with $4pi$ period not only with $varphi$ but also with orientational angle of the in-plane magnetic field $theta$ resulting in a magneto-Josephson effect. Third anomalous particle-particle channel, which represents a reflection of an electron-like (hole-like) quasiparticle to a electron-like (hole-like) quasiparticle with opposite spin-orientation, oscillates only with the in-plane magnetic field orientation angle $theta$. We present a detailed theoretical analysis of both DC and AC Josephson effects in such a system showing contributions from all these channels and discuss experiments which can test our theory.
88 - V.G. Kogan 2006
The precondition for the BKT transition in thin superconducting films, the logarithmic intervortex interaction, is satisfied at distances short relative to $Lambda=2lambda^2/d$, $lambda$ is the London penetration depth of the bulk material and $d$ is the film thickness. For this reason, the search for the transition has been conducted in samples of the size $L<Lambda$. It is argued below that film edges turn the interaction into near exponential (short-range) thus making the BKT transition impossible. If however the substrate is superconducting and separated from the film by an insulated layer, the logarithmic intervortex interaction is recovered and the BKT transition should be observable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا