Do you want to publish a course? Click here

Stopping light by an air waveguide with anisotropic metamaterial cladding

126   0   0.0 ( 0 )
 Added by Tian Jiang
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed study of oscillating modes in a slab waveguide with air core and anisotropic metamaterial cladding. It is shown that, under specific dielectric configurations, slow and even stopped electromagnetic wave can be supported by such an air waveguide. We propose a linearly tapped waveguide structure that could lead the propagating light to a complete standstill. Both the theoretical analysis and the proposed waveguide have been validated by full-wave simulation based on finite-difference time-domain method.



rate research

Read More

71 - Y. Tang , Z. Xi , M. Xu 2016
Hyperbolic Meta-Materials~(HMMs) are anisotropic materials with permittivity tensor that has both positive and negative eigenvalues. Here we report that by using a type II HMM as cladding material, a waveguide which only supports higher order modes can be achieved, while the lower order modes become leaky and are absorbed in the HMM cladding. This counter intuitive property can lead to novel application in optical communication and photonic integrated circuit. The loss in our HMM-Insulator-HMM~(HIH) waveguide is smaller than that of similar guided mode in a Metal-Insulator-Metal~(MIM) waveguide.
We present an ultra broadband thin-film infrared absorber made of saw-toothed anisotropic metamaterial. Absorbtivity of higher than 95% at normal incidence is supported in a wide range of frequencies, where the full absorption width at half maximum is about 86%. Such property is retained well at a very wide range of incident angles too. Light of shorter wavelengths are harvested at upper parts of the sawteeth of smaller widths, while light of longer wavelengths are trapped at lower parts of larger tooth widths. This phenomenon is explained by the slowlight modes in anisotropic metamaterial waveguide. Our study can be applied in the field of designing photovoltaic devices and thermal emitters.
The third-order optical nonlinearity in optical waveguides has found applications in optical switching, optical wavelength conversion, optical frequency comb generation, and ultrafast optical signal processing. The development of an integrated waveguide platform with a high nonlinearity is therefore important for nonlinear integrated photonics. Here, we report the observation of an enhancement in the nonlinearity of an air-cladding silicon pedestal waveguide. We observe enhanced nonlinear spectral broadening compared to a conventional silicon-on-insulator waveguide. At the center wavelength of 1555 nm, the nonlinear-index coefficient of air-cladding silicon pedestal waveguide is measured to be about 5% larger than that of a conventional silicon-on-insulator waveguide. We observe enhanced spectral broadening from self-phase modulation of an optical pulse in the pedestal waveguide. The interaction of light with the confined acoustic phonons in the pedestal structure gives rise to a larger nonlinear-index coefficient. The experimental results agree well with the theoretical models.
We propose and demonstrate, by simply inserting an air-hole in the waveguide side-coupling with a microring resonator (MRR), the transmission spectrum presents Fano lineshapes at all of the resonant modes. Measured from the fabricated devices, Fano lineshapes with slope rates over 400 dB/nm and extinction ratios over 20 dB are obtained. We ascribe it to the air-hole-induced phase-shift between the discrete resonant modes of the MRR and the continuum propagating mode of the bus-waveguide, which modifies their interference lineshapes from symmetric Lorentzian to asymmetric Fano. From devices with varied locations and diameters of the air-hole, different Fano asymmetric parameters are extracted, verifying the air-hole-induced phase-shifts. This air-hole-assisted waveguide-MRR structure for achieving Fano resonance lineshapes has advantages of simple design, compact footprint, large tolerance of fabrication errors, as well as broadband operation range. It has great potentials to expand and improve performances of on-chip MRR-based devices, including sensors, switchings and filters.
276 - Yinyue Lin , Yanxia Cui , Fei Ding 2016
The trapped rainbow effect has been mostly found on tapered anisotropic metamaterials (MMs) made of low loss noble metals, such as gold, silver, etc. In this work, we demonstrate that an anisotropic MM waveguide made of high loss metal tungsten can also support the trapped rainbow effect similar to the noble metal based structure. We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 micrometer to 9 micrometer with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow-light resonant modes is responsible for the efficient absorption at wavelengths longer than 2 micrometer, and the anti-reflection effect of tapered lossy material gives rise to the near perfect absorption at shorter wavelengths. The absorption spectrum suffers a small dip at around 4.2 micrometer where the first order and second order slow-light modes get overlapped, but we can get rid of this dip if the absorption band edge at long wavelength range is reduced down to 5 micrometer. The parametrical study reflects that the absorption bandwidth is mainly determined by the filling ratio of tungsten as well as the bottom diameter of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا