No Arabic abstract
Analysis of pulsar timing data-sets may provide the first direct detection of gravitational waves. This paper, the third in a series describing the mathematical framework implemented into the tempo2 pulsar timing package, reports on using tempo2 to simulate the timing residuals induced by gravitational waves. The tempo2 simulations can be used to provide upper bounds on the amplitude of an isotropic, stochastic, gravitational wave background in our Galaxy and to determine the sensitivity of a given pulsar timing experiment to individual, supermassive, binary black hole systems.
The International Pulsar Timing Array project combines observations of pulsars from both Northern and Southern hemisphere observatories with the main aim of detecting ultra-low frequency (~10^-9 to 10^-8 Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.
We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar dataset spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each pulsar, along with common correlated signals including clock, and Solar System ephemeris errors, obtaining a robust 95$%$ upper limit on the dimensionless strain amplitude $A$ of the background of $A<3.0times 10^{-15}$ at a reference frequency of $1mathrm{yr^{-1}}$ and a spectral index of $13/3$, corresponding to a background from inspiralling super-massive black hole binaries, constraining the GW energy density to $Omega_mathrm{gw}(f)h^2 < 1.1times10^{-9}$ at 2.8 nHz. We also present limits on the correlated power spectrum at a series of discrete frequencies, and show that our sensitivity to a fiducial isotropic GWB is highest at a frequency of $sim 5times10^{-9}$~Hz. Finally we discuss the implications of our analysis for the astrophysics of supermassive black hole binaries, and present 95$%$ upper limits on the string tension, $Gmu/c^2$, characterising a background produced by a cosmic string network for a set of possible scenarios, and for a stochastic relic GWB. For a Nambu-Goto field theory cosmic string network, we set a limit $Gmu/c^2<1.3times10^{-7}$, identical to that set by the {it Planck} Collaboration, when combining {it Planck} and high-$ell$ Cosmic Microwave Background data from other experiments. For a stochastic relic background we set a limit of $Omega^mathrm{relic}_mathrm{gw}(f)h^2<1.2 times10^{-9}$, a factor of 9 improvement over the most stringent limits previously set by a pulsar timing array.
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present much of the fundamental physics and mathematics concepts behind the calculations and theory used in pulsar timing. While there exist many reference sources in the literature, I try to offer a fully self-contained explanation of the fundamentals of this research which I hope the reader will find helpful. The next goal broadly speaking has been to further develop the mathematics behind the currently used pulsar timing models for detecting gravitational waves with pulsar timing experiments. I classify four regimes of interest, governed by frequency evolution and wavefront curvature effects incorporated into the timing residual models. Of these four regimes the plane-wave models are well established in previous literature. I add a new regime which I label Fresnel, as I show it becomes important for significant Fresnel numbers describing the curvature of the gravitational wavefront. Then I give two in-depth studies. The first forecasts the ability of future pulsar timing experiments to probe and measure these Fresnel effects. The second further generalizes the models to a cosmologically expanding universe, and I show how the Hubble constant can be measured directly in the most generalized pulsar timing residual model. This offers future pulsar timing experiments the possibility of being able to procure a purely gravitational wave-based measurement of the Hubble constant. The final chapter shows the initial steps taken to extend this work in the future toward Doppler tracking experiments.
We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory (PSC), a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hours of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 square degrees of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are - PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33-ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5-day orbit whose companion is likely a white dwarf star.
We have begun an exciting era for gravitational wave detection, as several world-leading experiments are breaching the threshold of anticipated signal strengths. Pulsar timing arrays (PTAs) are pan-Galactic gravitational wave detectors that are already cutting into the expected strength of gravitational waves from cosmic strings and binary supermassive black holes in the nHz-$mu$Hz gravitational wave band. These limits are leading to constraints on the evolutionary state of the Universe. Here, we provide a broad review of this field, from how pulsars are used as tools for detection, to astrophysical sources of uncertainty in the signals PTAs aim to see, to the primary current challenge areas for PTA work. This review aims to provide an up-to-date reference point for new parties interested in the field of gravitational wave detection via pulsar timing.