Do you want to publish a course? Click here

The Pulsar Search Collaboratory: Discovery and Timing of Five New Pulsars

311   0   0.0 ( 0 )
 Added by Rachel Rosen
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery and timing solutions of five new pulsars by students involved in the Pulsar Search Collaboratory (PSC), a NSF-funded joint program between the National Radio Astronomy Observatory and West Virginia University designed to excite and engage high-school students in Science, Technology, Engineering, and Mathematics (STEM) and related fields. We encourage students to pursue STEM fields by apprenticing them within a professional scientific community doing cutting edge research, specifically by teaching them to search for pulsars. The students are analyzing 300 hours of drift-scan survey data taken with the Green Bank Telescope at 350 MHz. These data cover 2876 square degrees of the sky. Over the course of five years, more than 700 students have inspected diagnostic plots through a web-based graphical interface designed for this project. The five pulsars discovered in the data have spin periods ranging from 3.1 ms to 4.8 s. Among the new discoveries are - PSR J1926-1314, a long period, nulling pulsar; PSR J1821+0155, an isolated, partially recycled 33-ms pulsar; and PSR J1400-1438, a millisecond pulsar in a 9.5-day orbit whose companion is likely a white dwarf star.



rate research

Read More

Reprocessing of the Parkes Multibeam Pulsar Survey has resulted in the discovery of five previously unknown pulsars and several as-yet-unconfirmed candidates. PSR J0922-52 has a period of 9.68 ms and a DM of 122.4 pc cm^-3. PSR J1147-66 has a period of 3.72 ms and a DM of 133.8 pc cm^-3. PSR J1227-6208 has a period of 34.53 ms, a DM of 362.6 pc cm^-3, is in a 6.7 day binary orbit, and was independently detected in an ongoing high-resolution Parkes survey by Thornton et al. and also in independent processing by Einstein@Home volunteers. PSR J1546-59 has a period of 7.80 ms and a DM of 168.3 pc cm^-3. PSR J1725-3853 is an isolated 4.79-ms pulsar with a DM of 158.2 pc cm^-3. These pulsars were likely missed in earlier processing efforts due to their high DMs and short periods and the large number of candidates that needed to be looked through. These discoveries suggest that further pulsars are awaiting discovery in the multibeam survey data.
The Pulsar Search Collaboratory (PSC) engages high school students and teachers in analyzing real data from the Robert C. Byrd Green Bank Telescope for the purpose of discovering exotic stars called pulsars. These cosmic clocks can be used as a galactic-scale detector of gravitational waves, ripples in space-time that have recently been directly detected from the mergers of stellar-mass black holes. Through immersing students in an authentic, positive learning environment to build a sense of belonging and competency, the goal of the PSC is to promote students long-term interests in science and science careers. PSC students have discovered 7 pulsars since the start of the PSC in 2008. Originally targeted at teachers and students in West Virginia, over time the program has grown to 18 states. In a new effort to scale the PSC nationally, the PSC has developed an integrated online training program with both self-guided lectures and homework and real-time interactions with pulsar astronomers. Now, any high school student can join in the exciting search for pulsars and the discovery of a new type of gravitational waves.
We report on the high-precision timing of 42 radio millisecond pulsars (MSPs) observed by the European Pulsar Timing Array (EPTA). This EPTA Data Release 1.0 extends up to mid-2014 and baselines range from 7-18 years. It forms the basis for the stochastic gravitational-wave background, anisotropic background, and continuous-wave limits recently presented by the EPTA elsewhere. The Bayesian timing analysis performed with TempoNest yields the detection of several new parameters: seven parallaxes, nine proper motions and, in the case of six binary pulsars, an apparent change of the semi-major axis. We find the NE2001 Galactic electron density model to be a better match to our parallax distances (after correction from the Lutz-Kelker bias) than the M2 and M3 models by Schnitzeler (2012). However, we measure an average uncertainty of 80% (fractional) for NE2001, three times larger than what is typically assumed in the literature. We revisit the transverse velocity distribution for a set of 19 isolated and 57 binary MSPs and find no statistical difference between these two populations. We detect Shapiro delay in the timing residuals of PSRs J1600$-$3053 and J1918$-$0642, implying pulsar and companion masses $m_p=1.22_{-0.35}^{+0.5} text{M}_{odot}$, $m_c = 0.21_{-0.04}^{+0.06} text{M}_{odot }$ and $m_p=1.25_{-0.4}^{+0.6} text{M}_{odot}$, $m_c = 0.23_{-0.05}^{+0.07} text{M}_{odot }$, respectively. Finally, we use the measurement of the orbital period derivative to set a stringent constraint on the distance to PSRs J1012$+$5307 and J1909$-$3744, and set limits on the longitude of ascending node through the search of the annual-orbital parallax for PSRs J1600$-$3053 and J1909$-$3744.
71 - C. Ng , B. Wu , M. Ma 2020
The Pulsar backend of the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has monitored hundreds of known pulsars in the northern sky since Fall 2018, providing a rich data set for the study of temporal variations in pulsar emission. Using a matched filtering technique, we report, for the first time, nulling behaviour in five pulsars as well as mode switching in nine pulsars. Only one of the pulsars is observed to show both nulling and moding signals. These new nulling and mode switching pulsars appear to come from a population with relatively long spin periods, in agreement with previous findings in the literature.
We report the discovery and timing results for five millisecond pulsars (MSPs) from the Arecibo PALFA survey: PSRs J1906+0055, J1914+0659, J1933+1726, J1938+2516, and J1957+2516. Timing observations of the 5 pulsars were conducted with the Arecibo and Lovell telescopes for time spans ranging from 1.5 to 3.3 yr. All of the MSPs except one (PSR J1914+0659) are in binary systems with low eccentricities. PSR J1957+2516 is likely a redback pulsar, with a ~0.1 $M_odot$ companion and possible eclipses that last ~10% of the orbit. The position of PSR J1957+2516 is also coincident with a NIR source. All 5 MSPs are distant (>3.1 kpc) as determined from their dispersion measures, and none of them show evidence of $gamma$-ray pulsations in a search of Fermi Gamma-Ray Space Telescope data. These 5 MSPs bring the total number of MSPs discovered by the PALFA survey to 26 and further demonstrate the power of this survey in finding distant, highly dispersed MSPs deep in the Galactic plane.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا