Do you want to publish a course? Click here

Gravitational wave burst search in the Virgo C7 data

108   0   0.0 ( 0 )
 Added by Marie-Anne Bizouard
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A search for gravitational wave burst events has been performed with the Virgo C7 commissioning run data that have been acquired in September 2005 over five days. It focused on un-modeled short duration signals in the frequency range 150 Hz to 2 kHz. A search aimed at detecting the GW emission from the merger and ringdown phases of binary black hole coalescences was also carried out. An extensive understanding of the data was required to be able to handle a burst search using the output of only one detector. A 90% confidence level upper limit on the number of expected events given the Virgo C7 sensitivity curve has been derived as a function of the signal strength, for un-modeled gravitational wave search. The sensitivity of the analysis presented is, in terms of the root sum square strain amplitude, $h_{rss} simeq 10^{-20} / sqrt{Hz}$. This can be interpreted in terms of a frequentist upper limit on the rate ${cal{R}}_{90%}$ of detectable gravitational wave bursts at the level of 1.1 events per day at 90% confidence level. From the binary black hole search, we obtained the distance reach at 50% and 90% efficiency as a function of the total mass of the final black hole. The maximal detection distance for non-spinning high and equal mass black hole binary system obtained by this analysis in C7 data is $simeq$ 2.9 $pm$ 0.1 Mpc for a detection efficiency of 50% for a binary of total mass $80 M_{odot}$.



rate research

Read More

The search procedure for burst gravitational waves has been studied using 24 hours of simulated data in a network of three interferometers (Hanford 4-km, Livingston 4-km and Virgo 3-km are the example interferometers). Several methods to detect burst events developed in the LIGO Scientific Collaboration (LSC) and Virgo collaboration have been studied and compared. We have performed coincidence analysis of the triggers obtained in the different interferometers with and without simulated signals added to the data. The benefits of having multiple interferometers of similar sensitivity are demonstrated by comparing the detection performance of the joint coincidence analysis with LSC and Virgo only burst searches. Adding Virgo to the LIGO detector network can increase by 50% the detection efficiency for this search. Another advantage of a joint LIGO-Virgo network is the ability to reconstruct the source sky position. The reconstruction accuracy depends on the timing measurement accuracy of the events in each interferometer, and is displayed in this paper with a fixed source position example.
With approximately 50 binary black hole events detected by LIGO/Virgo to date and many more expected in the next few years, gravitational-wave astronomy is shifting from individual-event analyses to population studies. We perform a hierarchical Bayesian analysis on the GWTC-2 catalog by combining several astrophysical formation models with a population of primordial black holes. We compute the Bayesian evidence for a primordial population compared to the null hypothesis, and the inferred fraction of primordial black holes in the data. We find that these quantities depend on the set of assumed astrophysical models: the evidence for primordial black holes against an astrophysical-only multichannel model is decisively favored in some scenarios, but it is significantly reduced in the presence of a dominant stable-mass-transfer isolated formation channel. The primordial channel can explain mergers in the upper mass gap such as GW190521, but (depending on the astrophysical channels we consider) a significant fraction of the events could be of primordial origin even if we neglected GW190521. The tantalizing possibility that LIGO/Virgo may have already detected black holes formed after inflation should be verified by reducing uncertainties in astrophysical and primordial formation models, and it may ultimately be confirmed by third-generation interferometers.
We present results from a search for gravitational-wave bursts in the data collected by the LIGO and Virgo detectors between July 7, 2009 and October 20, 2010: data are analyzed when at least two of the three LIGO-Virgo detectors are in coincident operation, with a total observation time of 207 days. The analysis searches for transients of duration < 1 s over the frequency band 64-5000 Hz, without other assumptions on the signal waveform, polarization, direction or occurrence time. All identified events are consistent with the expected accidental background. We set frequentist upper limits on the rate of gravitational-wave bursts by combining this search with the previous LIGO-Virgo search on the data collected between November 2005 and October 2007. The upper limit on the rate of strong gravitational-wave bursts at the Earth is 1.3 events per year at 90% confidence. We also present upper limits on source rate density per year and Mpc^3 for sample populations of standard-candle sources. As in the previous joint run, typical sensitivities of the search in terms of the root-sum-squared strain amplitude for these waveforms lie in the range 5 10^-22 Hz^-1/2 to 1 10^-20 Hz^-1/2. The combination of the two joint runs entails the most sensitive all-sky search for generic gravitational-wave bursts and synthesizes the results achieved by the initial generation of interferometric detectors.
We report results from a search for gravitational waves produced by perturbed intermediate mass black holes (IMBH) in data collected by LIGO and Virgo between 2005 and 2010. The search was sensitive to astrophysical sources that produced damped sinusoid gravitational wave signals, also known as ringdowns, with frequency $50le f_{0}/mathrm{Hz} le 2000$ and decay timescale $0.0001lesssim tau/mathrm{s} lesssim 0.1$ characteristic of those produced in mergers of IMBH pairs. No significant gravitational wave candidate was detected. We report upper limits on the astrophysical coalescence rates of IMBHs with total binary mass $50 le M/mathrm{M}_odot le 450$ and component mass ratios of either 1:1 or 4:1. For systems with total mass $100 le M/mathrm{M}_odot le 150$, we report a 90%-confidence upper limit on the rate of binary IMBH mergers with non-spinning and equal mass components of $6.9times10^{-8},$Mpc$^{-3}$yr$^{-1}$. We also report a rate upper limit for ringdown waveforms from perturbed IMBHs, radiating 1% of their mass as gravitational waves in the fundamental, $ell=m=2$, oscillation mode, that is nearly three orders of magnitude more stringent than previous results.
Long-lived gravitational wave (GW) transients have received interest in the last decade, as the sensitivity of LIGO and Virgo increases. Such signals, lasting between 10 and 1000s, can come from a variety of sources, including accretion disk instabilities around black holes, binary neutron stars post-merger, core-collapse supernovae, non-axisymmetric deformations in isolated neutron stars, and magnetar giant flares. Given the large parameter space and the lack of precisely modeled waveforms, searches must rely on robust detection algorithms, which make few or no assumptions on the nature of the signal. Here we present a new data analysis pipeline to search for long-lived transient GW signals, based on an excess cross-power statistic computed over a network of detectors. It uses a hierarchical strategy that allows to estimate the background quickly and implements several features aimed to increase detection sensitivity by 30% for a wide range of signal morphology compared to an older implementation. We also report upper limits on the GW energy emitted from a search conducted with the pipeline for GW emission around a sample of nearby magnetar giant flares, and discuss detection potential of such sources with second and third-generation detectors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا