No Arabic abstract
We study theoretically the contribution of fluctuating Cooper pairs to the persistent current in superconducting rings threaded by a magnetic flux. For sufficiently small rings, in which the coherence length $xi$ exceeds the radius $R$, mean field theory predicts a full reduction of the transition temperature to zero near half-integer flux. We find that nevertheless a very large current is expected to persist in the ring as a consequence of Cooper pair fluctuations that do not condense. For larger rings with $Rgg xi$ we calculate analytically the susceptibility in the critical region of strong fluctuations and show that it reflects competition of two interacting complex order parameters.
It is shown that in a structure consisting of a superconducting ring-shaped electrode overlapped by a normal metal contact through a thin oxide barrier, measurements of the tunnel current in magnetic field can probe persistent currents in the ring. The effect manifests itself as periodic oscillations of the tunnel current through the junction at a fixed bias voltage as function of perpendicular magnetic field. The magnitude of oscillations depends on bias point. It reaches maximum at energy eV which is close to the superconducting gap and decreases with increase of temperature. The period of oscillations dF in units of magnetic flux is equal neither to h/e nor to h/2e, but significantly exceeds these values for larger loop circumferences. The phenomenon is explained by formation of metastable states with large vorticity. The pairing potential and the superconducting density of states are periodically modulated by the persistent currents at sub-critical values resulting in corresponding variations of the measured tunnel current.
We investigate the subgap transport properties of a S-F-Ne structure. Here S (Ne) is a superconducting (normal) electrode, and F is either a ferromagnet or a normal wire in the presence of an exchange or a spin- splitting Zeeman field respectively. By solving the quasiclassical equations we first analyze the behavior of the subgap current, known as the Andreev current, as a function of the field strength for different values of the voltage, temperature and length of the junction. We show that there is a critical value of the bias voltage V * above which the Andreev current is enhanced by the spin-splitting field. This unexpected behavior can be explained as the competition between two-particle tunneling processes and decoherence mechanisms originated from the temperature, voltage and exchange field respectively. We also show that at finite temperature the Andreev current has a peak for values of the exchange field close to the superconducting gap. Finally, we compute the differential conductance and show that its measurement can be used as an accurate way of determining the strength of spin-splitting fields smaller than the superconducting gap.
In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.
The key ingredient of high critical currents in a type-II superconductor is defect sites that pin vortices. Contrary to earlier understanding on nano-patterned artificial pinning, here we show unequivocally the advantages of a random pinscape over an ordered array in a wide magnetic field range. We reveal that the better performance of a random pinscape is due to the variation of its local-density-of-pinning-sites (LDOPS), which mitigates the motion of vortices. This is confirmed by achieving even higher enhancement of the critical current through a conformally mapped random pinscape, where the distribution of the LDOPS is further enlarged. The demonstrated key role of LDOPS in enhancing superconducting critical currents gets at the heart of random versus commensurate pinning. Our findings highlight the importance of random pinscapes in enhancing the superconducting critical currents of applied superconductors.
We present the new paradigm of critical current by design. Analogous to materials by design, it aims at predicting the optimal defect landscape in a superconductor for targeted applications by elucidating the vortex dynamics responsible for the bulk critical current. To highlight this approach, we demonstrate the synergistic combination of critical current measurements on commercial high-temperature superconductors containing self-assembled and irradiation tailored correlated defects by using large-scale time-dependent Ginzburg-Landau simulations for vortex dynamics.