Do you want to publish a course? Click here

Neutrino Mass Seesaw at the Weak Scale, the Baryon Asymmetry, and the LHC

138   0   0.0 ( 0 )
 Added by Steve Blanchet
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

We consider theories where the Standard Model (SM) neutrinos acquire masses through the seesaw mechanism at the weak scale. We show that in such a scenario, the requirement that any pre-existing baryon asymmetry, regardless of its origin, not be washed out leads to correlations between the pattern of SM neutrino masses and the spectrum of new particles at the weak scale, leading to definite predictions for the LHC. For type I seesaw models with a TeV scale Z coupled to SM neutrinos, we find that for a normal neutrino mass hierarchy, at least one of the right-handed neutrinos must be `electrophobic, decaying with a strong preference into final states with muons and tauons rather than electrons. For inverted or quasi-degenerate mass patterns, on the other hand, we find upper bounds on the mass of at least one right-handed neutrino. In particular, for an inverted mass hierarchy, this bound is 1 TeV, while the corresponding upper limit in the quasi-degenerate case is 300 GeV. Similar results hold in type III seesaw models, albeit with somewhat more stringent bounds. For the Type II seesaw case with a weak scale SU(2) triplet Higgs, we again find that an interesting range of Higgs triplet masses is disallowed by these considerations.



rate research

Read More

We discuss the correlation between the CP violating Dirac phase of the lepton mixing matrix and the cosmological baryon asymmetry based on the leptogenesis in the minimal seesaw model with two right-handed Majorana neutrinos and the trimaximal mixing for neutrino flavors. The sign of the CP violating Dirac phase at low energy is fixed by the observed cosmological baryon asymmetry since there is only one phase parameter in the model. According to the recent T2K and NO$ u$A data of the CP violation, the Dirac neutrino mass matrix of our model is fixed only for the normal hierarchy of neutrino masses.
75 - T.K. Kuo , Guo-Hong Wu , 1999
We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem.
The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
We propose an extended version of the standard model, in which neutrino oscillation, dark matter, and baryon asymmetry of the Universe can be simultaneously explained by the TeV-scale physics without assuming unnatural hierarchy among the mass scales. Tiny neutrino masses are generated at the three loop level due to the exact $Z_2$ symmetry, by which stability of the dark matter candidate is guaranteed. The extra Higgs doublet is required not only for the tiny neutrino masses but also for successful electroweak baryogenesis. The model provides discriminative predictions especially in Higgs phenomenology, so that it is testable at current and future collider experiments.
We generalize the scalar triplet neutrino mass model, the type II seesaw. Requiring fine-tuning and arbitrarily small parameters to be absent leads to dynamical lepton number breaking at the electroweak scale and a rich LHC phenomenology. A smoking gun signature at the LHC that allows to distinguish our model from the usual type II seesaw scenario is identified. Besides, we discuss other interesting phenomenological aspects of the model such as the presence of a massless Goldstone boson and deviations of standard model Higgs couplings
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا