Do you want to publish a course? Click here

Mass Hierarchies and the Seesaw Neutrino Mixing

76   0   0.0 ( 0 )
 Added by Sadek Wagdy Mansour
 Publication date 1999
  fields
and research's language is English




Ask ChatGPT about the research

We give a general analysis of neutrino mixing in the seesaw mechanism with three flavors. Assuming that the Dirac and u-quark mass matrices are similar, we establish simple relations between the neutrino parameters and individual Majorana masses. They are shown to depend rather strongly on the physical neutrino mixing angles. We calculate explicitly the implied Majorana mass hierarchies for parameter sets corresponding to different solutions to the solar neutrino problem.



rate research

Read More

83 - Stephen F. King 2015
We discuss neutrino mass and mixing in the framework of the classic seesaw mechanism, involving right-handed neutrinos with large Majorana masses, which provides an appealing way to understand the smallness of neutrino masses. However, with many input parameters, the seesaw mechanism is in general not predictive. We focus on natural implementations of the seesaw mechanism, in which large cancellations do not occur, where one of the right handed neutrinos is dominantly responsible for the atmospheric neutrino mass, while a second right-handed neutrino accounts for the solar neutrino mass, leading to an effective two right-handed neutrino model. We discuss recent attempts to predict lepton mixing and CP violation within such natural frameworks, focussing on the Littlest Seesaw and its distinctive predictions.
We obtain a relationship between the hierarchies of mixing angles and of masses pertinent to the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) lepton mixing matrix. Using this relationship, we argue that the more severe hierarchy of the charge-$frac{2}{3}$ quark masses requires that the CKM matrix be close to a unit matrix whereas the milder hierarchy of the neutrino masses allows the PMNS matrix to depart markedly from the CKM matrix and contain large mixing angles of the type that are observed.
The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.
The present work is inspired to execute the $A_4$ modular symmetry in linear seesaw framework by limiting the use of multiple flavon fields. Linear seesaw is acknowledged by extending the Standard Model particle spectrum with six heavy fermions and a singlet scalar. The non-trivial transformation of Yukawa coupling under the $A_4$ modular symmetry helps to explore the neutrino phenomenology with a specific flavor structure of the mass matrix. We discuss the neutrino mixing and obtain the reactor mixing angle and CP violating phase compatible with the observed $3sigma$ region of current oscillation data. Apart, we also collectively investigate the nonzero CP asymmetry from the decay of lightest heavy fermions to explain the preferred phenomena of baryogenesis through leptogenesis
We construct a neutrino mass model based on the flavour symmetry group $A_4times C_4 times C_6 times C_2$ which accommodates a light sterile neutrino in the minimal extended seesaw (MES) scheme. Besides the flavour symmetry, we introduce a $U(1)$ gauge symmetry in the sterile sector and also impose CP symmetry. The vacuum alignments of the scalar fields in the model spontaneously break these symmetries and lead to the construction of the fermion mass matrices. With the help of the MES formulas, we extract the light neutrino masses and the mixing observables. In the active neutrino sector, we obtain the $text{TM}_2$ mixing pattern with non-zero reactor angle and broken $mu$-$tau$ reflection symmetry. We express all the active and the sterile oscillation observables in terms of only four real model parameters. Using this highly constrained scenario we predict $sin^2 theta_{23} =0.545^{+0.003}_{-0.004}$, $sin delta = -0.911^{+0.006}_{-0.005}$, $|U_{e4}|^2 = 0.029^{+0.009}_{-0.008}$, $|U_{mu4}|^2 = 0.010^{+0.003}_{-0.003}$ and $|U_{tau4}|^2 = 0.006^{+0.002}_{-0.002}$ which are consistent with the current data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا