We discuss the behavior of a two-level system coupled to a quantum dot contacted by superconducting source/drain electrodes, representing a simple model for the conformational degree of freedom of a molecular dot or a break junction. The Josephson current is shown to induce conformational changes, including a complete reversal. For small bias voltage, periodic conformational motions induced by Landau-Zener transitions between Andreev states are predicted.
We investigate the Josephson radiation emitted by a junction made of a quantum dot coupled to two conventional superconductors. Close to resonance, the particle-hole symmetric Andreev states that form in the junction are detached from the continuum above the superconducting gap in the leads, while a gap between them opens near the Fermi level. Under voltage bias, we formulate a stochastic model that accounts for non-adiabatic processes, which change the occupations of the Andreev states. This model allows calculating the current noise spectrum and determining the Fano factor. Analyzing the finite-frequency noise, we find that the model may exhibit either an integer or a fractional AC Josephson effect, depending on the bias voltage and the size of the gaps in the Andreev spectrum. Our results assess the limitations in using the fractional Josephson radiation as a probe of topology.
We consider a Josephson junction where the weak-link is formed by a non-centrosymmetric ferromagnet. In such a junction, the superconducting current acts as a direct driving force on the magnetic moment. We show that the a.c. Josephson effect generates a magnetic precession providing then a feedback to the current. Magnetic dynamics result in several anomalies of current-phase relations (second harmonic, dissipative current) which are strongly enhanced near the ferromagnetic resonance frequency.
We study the dynamics of current-biased Josephson-junction arrays with a magnetic penetration depth smaller than the lattice spacing. We compare the dynamics imaged by low-temperature scanning electron microscopy to the vortex dynamics obtained from model calculations based on the resistively-shunted junction model, in combination with Maxwells equations. We find three bias current regions with fundamentally different array dynamics. The first region is the subcritical region, i.e. below the array critical current I_c. The second, for currents I above I_c, is a vortex region, in which the response is determined by the vortex degrees of freedom. In this region, the dynamics is characterized by spatial domains where vortices and antivortices move across the array in opposite directions in adjacent rows and by transverse voltage fluctuations. In the third, for still higher currents, the dynamics is dominated by coherent-phase motion, and the current-voltage characteristics are linear.
We theoretically study the superconducting proximity effect in a quantum dot coupled to two superconducting leads when the intradot interaction between electrons is made attractive. Because of the superconducting proximity effect, the electronic states for the embedded quantum dot are either spin-polarized states with an odd occupation number or BCS-like states with an even occupation number. We show that in the presence of an external magnetic field, the system can exhibit quantum phase transitions of fermion parity associated with the occupation number. In this work, we adopt a self-consistent theoretical method to extend our considerations beyond the so-called superconducting atomic limit in which the superconducting gap for the leads is assumed to be the largest energy scale. The method enables us to numerically investigate the electronic structure of the dot as results of the attractive interaction. For energy phase diagrams in the regime away from the atomic limit, we find a reentrant behavior where a BCS-like phase of the dot exists in an intermediate range of the hybridization strength between the quantum dot and the leads. We also consider Josephson current phase relations and identify a number of examples showing $0-pi$ phase transitions that may offer important switching effects.
We analyze the ground state properties of an array of quantum dots connected in series between superconducting electrodes. This system is represented by a finite Hubbard chain coupled at both ends to BCS superconductors. The ground state is obtained using the Lanczos algorithm within a low energy theory in which the bulk superconductors are replaced by effective local pairing potentials. We study the conditions for the inversion of the sign of the Josephson coupling ($pi$-junction behavior) as a function of the model parameters. Results are presented in the form of phase diagrams which provide a direct overall view of the general trends as the size of the system is increased, exhibiting a strong even-odd effect. The analysis of the spin-spin correlation functions and local charges give further insight into the nature of the ground state and how it is transformed by the presence of superconductivity in the leads. Finally we study the scaling of the Josephson current with the system size and relate these results with previous calculations of Josephson transport through a Luttinger liquid.