Do you want to publish a course? Click here

A Horizontal Categorification of Gelfand Duality

227   0   0.0 ( 0 )
 Added by Paolo Bertozzini -
 Publication date 2010
  fields
and research's language is English




Ask ChatGPT about the research

In the setting of C*-categories, we provide a definition of spectrum of a commutative full C*-category as a one-dimensional unital saturated Fell bundle over a suitable groupoid (equivalence relation) and prove a categorical Gelfand duality theorem generalizing the usual Gelfand duality between the categories of commutative unital C*-algebras and compact Hausdorff spaces. Although many of the individual ingredients that appear along the way are well-known, the somehow unconventional way we glue them together seems to shed some new light on the subject.



rate research

Read More

We present a duality between the category of compact Riemannian spin manifolds (equipped with a given spin bundle and charge conjugation) with isometries as morphisms and a suitable metric category of spectral triples over commutative pre-C*-algebras. We also construct an embedding of a quotient of the category of spectral triples introduced in arXiv:math/0502583v1 into the latter metric category. Finally we discuss a further related duality in the case of orientation and spin-preserving maps between manifolds of fixed dimension.
We present a constructive proof of Gelfand duality for C*-algebras by reducing the problem to Gelfand duality for real C*-algebras.
165 - Gregor Schaumann 2014
This article investigates duals for bimodule categories over finite tensor categories. We show that finite bimodule categories form a tricategory and discuss the dualities in this tricategory using inner homs. We consider inner-product bimodule categories over pivotal tensor categories with additional structure on the inner homs. Inner-product module categories are related to Frobenius algebras and lead to the notion of $*$-Morita equivalence for pivotal tensor categories. We show that inner-product bimodule categories form a tricategory with two duality operations and an additional pivotal structure. This is work is motivated by defects in topological field theories.
Motivated by recent advances in the categorification of quantum groups at prime roots of unity, we develop a theory of 2-representations for 2-categories enriched with a p-differential which satisfy finiteness conditions analogous to those of finitary or fiat 2-categories. We construct cell 2-representations in this setup, and consider 2-categories stemming from bimodules over a p-dg category in detail. This class is of particular importance in the categorification of quantum groups, which allows us to apply our results to cyclotomic quotients of the categorifications of small quantum group of type $mathfrak{sl}_2$ at prime roots of unity by Elias-Qi [Advances in Mathematics 288 (2016)]. Passing to stable 2-representations gives a way to construct triangulated 2-representations, but our main focus is on working with p-dg enriched 2-representations that should be seen as a p-dg enhancement of these triangulated ones.
100 - Benjamin Dupont 2019
We study a presentation of Khovanov - Lauda - Rouquiers candidate $2$-categorification of a quantum group using algebraic rewriting methods. We use a computational approach based on rewriting modulo the isotopy axioms of its pivotal structure to compute a family of linear bases for all the vector spaces of $2$-cells in this $2$-category. We show that these bases correspond to Khovanov and Laudas conjectured generating sets, proving the non-degeneracy of their diagrammatic calculus. This implies that this $2$-category is a categorification of Lusztigs idempotent and integral quantum group $bf{U}_{q}(mathfrak{g})$ associated to a symmetrizable simply-laced Kac-Moody algebra $mathfrak{g}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا