Do you want to publish a course? Click here

Rewriting modulo isotopies in Khovanov-Lauda-Rouquiers categorification of quantum groups

101   0   0.0 ( 0 )
 Added by Benjamin Dupont
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study a presentation of Khovanov - Lauda - Rouquiers candidate $2$-categorification of a quantum group using algebraic rewriting methods. We use a computational approach based on rewriting modulo the isotopy axioms of its pivotal structure to compute a family of linear bases for all the vector spaces of $2$-cells in this $2$-category. We show that these bases correspond to Khovanov and Laudas conjectured generating sets, proving the non-degeneracy of their diagrammatic calculus. This implies that this $2$-category is a categorification of Lusztigs idempotent and integral quantum group $bf{U}_{q}(mathfrak{g})$ associated to a symmetrizable simply-laced Kac-Moody algebra $mathfrak{g}$.



rate research

Read More

100 - Benjamin Dupont 2019
In this paper, we study rewriting modulo a set of algebraic axioms in categories enriched in linear categories, called linear~$(2,2)$-categories. We introduce the structure of linear~$(3,2)$-polygraph modulo as a presentation of a linear~$(2,2)$-category by a rewriting system modulo algebraic axioms. We introduce a symbolic computation method in order to compute linear bases for the vector spaces of $2$-cells of these categories. In particular, we study the case of pivotal $2$-categories using the isotopy relations given by biadjunctions on $1$-cells and cyclicity conditions on $2$-cells as axioms for which we rewrite modulo. By this constructive method, we recover the bases of normally ordered dotted oriented Brauer diagrams in te affine oriented Brauer linear~$(2,2)$-category.
Motivated by recent advances in the categorification of quantum groups at prime roots of unity, we develop a theory of 2-representations for 2-categories enriched with a p-differential which satisfy finiteness conditions analogous to those of finitary or fiat 2-categories. We construct cell 2-representations in this setup, and consider 2-categories stemming from bimodules over a p-dg category in detail. This class is of particular importance in the categorification of quantum groups, which allows us to apply our results to cyclotomic quotients of the categorifications of small quantum group of type $mathfrak{sl}_2$ at prime roots of unity by Elias-Qi [Advances in Mathematics 288 (2016)]. Passing to stable 2-representations gives a way to construct triangulated 2-representations, but our main focus is on working with p-dg enriched 2-representations that should be seen as a p-dg enhancement of these triangulated ones.
Let $mathfrak{g}$ be a semisimple simply-laced Lie algebra of finite type. Let $mathcal{C}$ be an abelian categorical representation of the quantum group $U_q(mathfrak{g})$ categorifying an integrable representation $V$. The Artin braid group $B$ of $mathfrak{g}$ acts on $D^b(mathcal{C})$ by Rickard complexes, providing a triangulated equivalence $Theta_{w_0}:D^b(mathcal{C}_mu) to D^b(mathcal{C}_{w_0(mu)})$, where $mu$ is a weight of $V$ and $Theta_{w_0}$ is a positive lift of the longest element of the Weyl group. We prove that this equivalence is t-exact up to shift when $V$ is isotypic, generalising a fundamental result of Chuang and Rouquier in the case $mathfrak{g}=mathfrak{sl}_2$. For general $V$, we prove that $Theta_{w_0}$ is a perverse equivalence with respect to a Jordan-Holder filtration of $mathcal{C}$. Using these results we construct, from the action of $B$ on $V$, an action of the cactus group on the crystal of $V$. This recovers the cactus group action on $V$ defined via generalised Schutzenberger involutions, and provides a new connection between categorical representation theory and crystal bases. We also use these results to give new proofs of theorems of Berenstein-Zelevinsky, Rhoades, and Stembridge regarding the action of symmetric group on the Kazhdan-Lusztig basis of its Specht modules.
We describe a categorification of the Double Affine Hecke Algebra ${mathcal{H}kern -.4emmathcal{H}}$ associated with an affine Lie algebra $widehat{mathfrak{g}}$, a categorification of the polynomial representation and a categorification of Macdonald polynomials. All categorification results are given in the derived setting. That is, we consider the derived category associated with graded modules over the Lie superalgera ${mathfrak I}[xi]$, where ${mathfrak I}subsetwidehat{mathfrak{g}}$ is the Iwahori subalgebra of the affine Lie algebra and $xi$ is a formal odd variable. The Euler characteristic of graded characters of a complex of ${mathfrak I}[xi]$-modules is considered as an element of a polynomial representation. First, we show that the compositions of induction and restriction functors associated with minimal parabolic subalgebras ${mathfrak{p}}_{i}$ categorify Demazure operators $T_i+1in{mathcal{H}kern -.4emmathcal{H}}$, meaning that all algebraic relations of $T_i$ have categorical meanings. Second, we describe a natural collection of complexes ${mathbb{EM}}_{lambda}$ of ${mathfrak I}[xi]$-modules whose Euler characteristic is equal to nonsymmetric Macdonald polynomials $E_lambda$ for dominant $lambda$ and a natural collection of complexes of $mathfrak{g}[z,xi]$-modules ${mathbb{PM}}_{lambda}$ whose Euler characteristic is equal to the symmetric Macdonald polynomial $P_{lambda}$. We illustrate our theory with the example $mathfrak{g}=mathfrak{sl}_2$ where we construct the cyclic representations of Lie superalgebra ${mathfrak I}[xi]$ such that their supercharacters coincide with renormalizations of nonsymmetric Macdonald polynomials.
We calculate the Plancherel formula for complex semisimple quantum groups, that is, Drinfeld doubles of $ q $-deformations of compact semisimple Lie groups. As a consequence we obtain a concrete description of their associated reduced group $ C^* $-algebras. The main ingredients in our proof are the Bernstein-Gelfand-Gelfand complex and the Hopf trace formula.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا