We prove a uniqueness theorem for stationary $D$-dimensional Kaluza-Klein black holes with $D-2$ Killing fields, generating the symmetry group ${mathbb R} times U(1)^{D-3}$. It is shown that the topology and metric of such black holes is uniquely determined by the angular momenta and certain other invariants consisting of a number of real moduli, as well as integer vectors subject to certain constraints.
In a previous paper arXiv:0707.2775 [gr-qc] we showed that stationary asymptotically flat vacuum black hole solutions in 5 dimensions with two commuting axial Killing fields can be completely characterized by their mass, angular momentum, a set of real moduli, and a set of winding numbers. In this paper we generalize our analysis to include Maxwell fields.
We study motions of photons in an unmagnetized cold homogeneous plasma medium in the five-dimensional charged static squashed Kaluza-Klein black hole spacetime. In this case, a photon behaves as a massive particle in a four-dimensional spherically symmetric spacetime. We consider the light deflection by the squashed Kaluza-Klein black hole surrounded by the plasma in a weak-field limit. We derive corrections of the deflection angle to general relativity, which are related to the size of the extra dimension, the charge of the black hole and the ratio between the plasma and the photon frequencies.
We study the shadow of a rotating squashed Kaluza-Klein (KK) black hole and the shadow is found to possess distinct properties from those of usual rotating black holes. It is shown that the shadow for a rotating squashed KK black hole is heavily influenced by the specific angular momentum of photon from the fifth dimension. Especially, as the parameters lie in a certain special range, there is no any shadow for a black hole, which does not emerge for the usual black holes. In the case where the black hole shadow exists, the shadow shape is a perfect black disk and its radius decreases with the rotation parameter of the black hole. Moreover, the change of the shadow radius with extra dimension parameter also depends on the rotation parameter of black hole. Finally, with the latest observation data, we estimate the angular radius of the shadow for the supermassive black hole Sgr $A^{*}$ at the centre of the Milky Way galaxy and the supermassive black hole in $M87$.
The newly proposed island formula for entanglement entropy of Hawking radiation is applied to spherically symmetric 4-dimensional eternal Kaluza-Klein (KK) black holes (BHs). The charge $Q$ of a KK BH quantifies its deviation from a Schwarzschild BH. The impact of $Q$ on the island is studied at both early and late times. The early size of the island, emph{if exists}, is of order Planck length $ell_{mathrm{P}}$, and will be shortened by $Q$ by a factor $1/sqrt2$ at most. The late-time island, whose boundary is on the outside but within a Planckian distance of the horizon, is slightly extended. While the no-island entropy grows linearly, the late-time entanglement entropy is given by island configuration with twice the Bekenstein-Hawking entropy. Thus we reproduce the Page curve for the eternal KK BHs. Compared with Schwarzschild results, the Page time and the scrambling time are marginally delayed. Moreover, the higher-dimensional generalization is presented. Skeptically, in both early and late times, there are Planck length scales involved, in which a semi-classical description of quantum fields breaks down.
We show that two stationary, asymptotically flat vacuum black holes in 5 dimensions with two commuting axial symmetries are identical if and only if their masses, angular momenta, and their ``rod structures coincide. We also show that the horizon must be topologically either a 3-sphere, a ring, or a Lens-space. Our argument is a generalization of constructions of Morisawa and Ida (based in turn on key work of Maison) who considered the spherical case, combined with basic arguments concerning the nature of the factor manifold of symmetry orbits.