Current-induced domain wall (DW) displacements in an array of ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy have been directly observed by wide field Kerr microscopy. DWs in all wires in the array were driven simultaneously and their displacement on the micrometer-scale was controlled by the current pulse amplitude and duration. At the lower current densities where DW displacements were observed (j less than or equal to 1.5 x 10^12 A/m^2), the DW motion obeys a creep law. At higher current density (j = 1.8 x 10^12 A/m^2), zero-field average DW velocities up to 130 +/- 10 m/s were recorded.
We report on magnetic domain wall velocity measurements in ultrathin Pt/Co(0.5-0.8 nm)/Pt films with perpendicular anisotropy over a large range of applied magnetic fields. The complete velocity-field characteristics are obtained, enabling an examination of the transition between thermally activated creep and viscous flow: motion regimes predicted from general theories for driven elastic interfaces in weakly disordered media. The dissipation limited flow regime is found to be consistent with precessional domain wall motion, analysis of which yields values for the damping parameter, $alpha$.
The nucleation of reversed magnetic domains in Pt/Co/AlO$_{x}$ microstructures with perpendicular anisotropy was studied experimentally in the presence of an in-plane magnetic field. For large enough in-plane field, nucleation was observed preferentially at an edge of the sample normal to this field. The position at which nucleation takes place was observed to depend in a chiral way on the initial magnetization and applied field directions. An explanation of these results is proposed, based on the existence of a sizable Dzyaloshinskii-Moriya interaction in this sample. Another consequence of this interaction is that the energy of domain walls can become negative for in-plane fields smaller than the effective anisotropy field.
Magnetic relaxation measurements were carried out by magneto-optical Kerr effect on exchange biased (Pt/Co)5/Pt/FeMn multilayers with perpendicular anisotropy. In these films the coercivity and the exchange bias field vary with Pt spacer thickness, and have a maximum for 0.2 nm. Hysteresis loops do not reveal important differences between the reversal for ascending and descending fields. Relaxation measurements were fitted using Fatuzzos model, which assumes that reversal occurs by domain nucleation and domain wall propagation. For 2 nm thick Pt spacer (no exchange bias) the reversal is dominated by domain wall propagation starting from a few nucleation centers. For 0.2 nm Pt spacer (maximum exchange bias) the reversal is strongly dominated by nucleation, and no differences between the behaviour of the ascending and descending branches can be observed. For 0.4 nm Pt spacer (weaker exchange bias) the nucleation density becomes less important, and the measurements reveal a much stronger density of nucleation centers in the descending branch.
We report on a method to tune the orientation of in-plane magnetic domains and domain walls in thin ferromagnetic strips by manipulating the magnetic anisotropy. Uniaxial in-plane anisotropy is induced in a controlled way by oblique evaporation of magnetic thin strips. A direct correlation between the magnetization direction and the domain wall orientation is found experimentally and confirmed by micromagnetic simulations. The domain walls in the strips are always oriented along the oblique evaporation-induced easy axis, in spite of the shape anisotropy. The controlled manipulation of domain wall orientations could open new possibilities for novel devices based on domain-wall propagation.
We have studied the magnetic properties of multilayers composed of ferromagnetic metal Co and heavy metals with strong spin orbit coupling (Pt and Ir). Multilayers with symmetric (ABA stacking) and asymmetric (ABC stacking) structures are grown to study the effect of broken structural inversion symmetry. We compare the perpendicular magnetic anisotropy (PMA) energy of symmetric Pt/Co/Pt, Ir/Co/Ir multilayers and asymmetric Pt/Co/Ir, Ir/Co/Pt multilayers. First, the interface contribution to the PMA is studied using the Co layer thickness dependence of the effective PMA energy. Comparison of the interfacial PMA between the Ir/Co/Pt, Pt/Co/Ir asymmetric structures and Pt/Co/Pt, Ir/Co/Ir symmetric structures indicate that the broken structural inversion symmetry induced PMA is small compared to the overall interfacial PMA. Second, we find the magnetic anisotropy field is significantly increased in multilayers when the ferromagnetic layers are antiferromagnetically coupled via interlayer exchange coupling (IEC). Macrospin model calculations can qualitatively account for the relation between the anisotropy field and the IEC. Among the structures studied, IEC is the largest for the asymmetric Ir/Co/Pt multilayers: the exchange coupling field exceeds 3 T and consequently, the anisotropy field approaches 10 T. Third, comparing the asymmetric Ir/Co/Pt and Pt/Co/Ir structures, we find the IEC and, to some extent, the interface PMA are stronger for the former than the latter. X-ray magnetic circular dichroism studies suggest that the proximity induced magnetization in Pt is larger for the Ir/Co/Pt multilayers than the inverted structure, which may partly account for the difference in the magnetic properties. These results show the intricate relation between PMA, IEC and the proximity induced magnetization that can be exploited to design artificial structures with unique magnetic characteristics.
T. A. Moore
,I. M. Miron
,G. Gaudin
.
(2009)
.
"High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy"
.
Gilles Gaudin
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا