Do you want to publish a course? Click here

Controlled switching between paramagnetic and diamagnetic Meissner effect in Pb/Co nanocomposites

163   0   0.0 ( 0 )
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A hybrid system which consists of a superconducting (SC) Pb film (100 nm thickness) containing $sim$1 vol% single domain ferromagnetic (FM) Co particles of mean-size $sim$4.5 nm reveal unusual magnetic properties: (i) a controlled switching between the usual diamagnetic and the unusual paramagnetic Meissner effect in field cooling as well as in zero-field cooling experiments (ii) amplification of the positive magnetization when the sample enters the SC state below T$_c$. These experimental findings can be explained by the formation of spontaneous vortices and the possible alignment of these vortices due to the foregoing alignment of the Co particle FM moments by an external magnetic field.

rate research

Read More

Paramagnetic Meissner Effect (PME) was observed in Co/Nb/Co trilayers and multilayers. Measurements of the response to perpendicular external field near the superconducting transition temperature were carried out for various Nb thicknesses. PME was found only when layer thickness is no smaller than penetration depth of Nb. A classical flux compression model [Koshelev and Larkin, Phys. Rev. B 52, 13559 (1995)] was used to explain our data. We inferred that the penetration depth was a critical length, below which superconducting current density became too small and the PME could not be achieved.
Pb films embedded with homogeneously distributed cobalt (Co) nanoparticles (mean size 4.5 nm) have been prepared. Previous transport investigations have shown that Co particles induce spontaneous vortices below the superconducting transition temperature (T$_{c}$) in zero external magnetic field. In this paper we study in detail the influence of the Co volume franction and an external magnetic field on the superconducting transition in such composites. The large difference in T$_c$-reduction between the as-prepared and annealed samples can be attributed to the different superconducting coherence lengths and the resulting different diameters of the spontaneous vortices in these samples.
81 - A. P. Nielsen 2000
We have measured a paramagnetic Meissner effect in Nb-Al2O3-Nb Josephson junction arrays using a scanning SQUID microscope. The arrays exhibit diamagnetism for some cooling fields and paramagnetism for other cooling fields. The measured mean magnetization is always less than 0.3 flux quantum (in terms of flux per unit cell of the array) for the range of cooling fields investigated. We demonstrate that a new model of magnetic screening, valid for multiply-connected superconductors, reproduces all of the essential features of paramagnetism that we observe and that no exotic mechanism, such as d-wave superconductivity, is needed for paramagnetism.
Conventional superconductors respond to external magnetic fields by generating diamagnetic screening currents. However, theoretical work has shown that one can engineer systems where the screening current is paramagnetic, causing them to attract magnetic flux -- a prediction that has recently been experimentally verified. In contrast to previous studies, we show that this effect can be realized in simple superconductor/normal-metal structures with no special properties, using only a simple voltage bias to drive the system out of equilibrium. This is of fundamental interest, since it opens up a new avenue of research, and at the same time highlights how one can realize paramagnetic Meissner effects without having odd-frequency states at the Fermi level. Moreover, a voltage-tunable electromagnetic response in such a simple system may be interesting for future device design.
An increase of the magnetic moment in superconductor/ferromagnet (S/F) bilayers V(40nm)/F [F$=$Fe(1,3nm), Co(3nm), Ni(3nm)] was observed using SQUID magnetometry upon cooling below the superconducting transition temperature Tc in magnetic fields of 10 Oe to 50 Oe applied parallel to the sample surface. A similar increase, often called the paramagnetic Meissner effect (PME), was observed before in various superconductors and superconductor/ferromagnet systems. To explain the PME effect in the presented S/F bilayers a model based on a row of vortices located at the S/F interface is proposed. According to the model the magnetic moment induced below Tc consists of the paramagnetic contribution of the vortex cores and the diamagnetic contribution of the vortex-free region of the S layer. Since the thickness of the S layer is found to be 3-4 times less than the magnetic field penetration depth, this latter diamagnetic contribution is negligible. The model correctly accounts for the sign, the approximate magnitude and the field dependence of the paramagnetic and the Meissner contributions of the induced magnetic moment upon passing the superconducting transition of a ferromagnet/superconductor bilayer.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا