No Arabic abstract
An increase of the magnetic moment in superconductor/ferromagnet (S/F) bilayers V(40nm)/F [F$=$Fe(1,3nm), Co(3nm), Ni(3nm)] was observed using SQUID magnetometry upon cooling below the superconducting transition temperature Tc in magnetic fields of 10 Oe to 50 Oe applied parallel to the sample surface. A similar increase, often called the paramagnetic Meissner effect (PME), was observed before in various superconductors and superconductor/ferromagnet systems. To explain the PME effect in the presented S/F bilayers a model based on a row of vortices located at the S/F interface is proposed. According to the model the magnetic moment induced below Tc consists of the paramagnetic contribution of the vortex cores and the diamagnetic contribution of the vortex-free region of the S layer. Since the thickness of the S layer is found to be 3-4 times less than the magnetic field penetration depth, this latter diamagnetic contribution is negligible. The model correctly accounts for the sign, the approximate magnitude and the field dependence of the paramagnetic and the Meissner contributions of the induced magnetic moment upon passing the superconducting transition of a ferromagnet/superconductor bilayer.
We have measured a paramagnetic Meissner effect in Nb-Al2O3-Nb Josephson junction arrays using a scanning SQUID microscope. The arrays exhibit diamagnetism for some cooling fields and paramagnetism for other cooling fields. The measured mean magnetization is always less than 0.3 flux quantum (in terms of flux per unit cell of the array) for the range of cooling fields investigated. We demonstrate that a new model of magnetic screening, valid for multiply-connected superconductors, reproduces all of the essential features of paramagnetism that we observe and that no exotic mechanism, such as d-wave superconductivity, is needed for paramagnetism.
Solving phenomenological macroscopic equations instead of microscopic Ginzburg-Landau equations for superconductors is much easier and can be advantageous in a variety of applications. However, till now, only Beans critical state model is available for the description of irreversible properties. Here we propose a plausible overall macroscopic model for both reversible and irreversible properties, combining London theory and Beans model together based on superposition principle. First, a simple case where there is no pinning is discussed, from which a microscopic basis for Beans model is explored. It is shown that a new concept of flux share is needed when the field is increased above the lower critical field. A portion of magnetic flux is completely shielded, named as Meissner share and the rest penetrates through vortices, named as vortices share. We argue that the flux shares are irreversible if there is pinning. It is shown that the irreversible flux shares can be the reason for observed peculiar reversible magnetization behavior near zero field. The overall macroscopic model seems to be valuable for the analysis of fundamental physical properties as well. As an example, it is shown the origin of paramagnetic Meissner effect can be explained by the phenomenological macroscopic model.
Conventional superconductors respond to external magnetic fields by generating diamagnetic screening currents. However, theoretical work has shown that one can engineer systems where the screening current is paramagnetic, causing them to attract magnetic flux -- a prediction that has recently been experimentally verified. In contrast to previous studies, we show that this effect can be realized in simple superconductor/normal-metal structures with no special properties, using only a simple voltage bias to drive the system out of equilibrium. This is of fundamental interest, since it opens up a new avenue of research, and at the same time highlights how one can realize paramagnetic Meissner effects without having odd-frequency states at the Fermi level. Moreover, a voltage-tunable electromagnetic response in such a simple system may be interesting for future device design.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscillatory behavior of the superconducting pair wave function in the F-layer. Then, we concentrate on recent theoretical predictions for S/F layer systems. These are a) generation of odd triplet superconductivity in the F-layer and b) ferromagnetism induced in the S-layer below the superconducting transition temperature $T_{c}$ (inverse proximity effect). The second part of the review is devoted to discussion of experiments relevant to the theoretical predictions of the first part. In particular, we present results of measurements of the critical temperature $T_{c}$ as a function of the thickness of F-layers and we review experiments indicating existence of odd triplet superconductivity, cryptoferromagnetism and inverse proximity effect.
Paramagnetic Meissner Effect (PME) was observed in Co/Nb/Co trilayers and multilayers. Measurements of the response to perpendicular external field near the superconducting transition temperature were carried out for various Nb thicknesses. PME was found only when layer thickness is no smaller than penetration depth of Nb. A classical flux compression model [Koshelev and Larkin, Phys. Rev. B 52, 13559 (1995)] was used to explain our data. We inferred that the penetration depth was a critical length, below which superconducting current density became too small and the PME could not be achieved.