The non-linear effects operating at the recombination epoch generate a non-Gaussian signal in the CMB anisotropies. Such a contribution is relevant because it represents a major part of the second-order radiation transfer function which must be determined in order to have a complete control of both the primordial and non-primordial part of non-Gaussianity in the CMB anisotropies. We provide an estimate of the level of non-Gaussianity in the CMB arising from the recombination epoch which shows up mainly in the equilateral configuration. We find that it causes a contamination to the possible measurement of the equilateral primordial bispectrum shifting the minimum detectable value of the non-Gaussian parameter f^equil_NL by Delta f^equil_NL= O(10) for an experiment like Planck.
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition - such as in the case of smooth transition or some sharp transition scenarios - the $mathcal{O}(1)$ local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
We use data from the WMAP temperature maps to constrain a scale-dependent generalization of the popular local model for primordial non-Gaussianity. In the model where the parameter fNL is allowed to run with scale k, fNL(k) = fNL* (k/k_piv)^n, we constrain the running to be n = 0.30(+1.9)(-1.2) at 95% confidence, marginalized over the amplitude fNL*. The constraints depend somewhat on the prior probabilities assigned to the two parameters. In the near future, constraints from a combination of Planck and large-scale structure surveys are expected to improve this limit by about an order of magnitude and usefully constrain classes of inflationary models.
We study an inflationary scenario with a two-form field to which an inflaton couples non-trivially. First, we show that anisotropic inflation can be realized as an attractor solution and that the two-form hair remains during inflation. A statistical anisotropy can be developed because of a cumulative anisotropic interaction induced by the background two-form field. The power spectrum of curvature perturbations has a prolate-type anisotropy, in contrast to the vector models having an oblate-type anisotropy. We also evaluate the bispectrum and trispectrum of curvature perturbations by employing the in-in formalism based on the interacting Hamiltonians. We find that the non-linear estimators $f_{NL}$ and $tau_{NL}$ are correlated with the amplitude $g_*$ of the statistical anisotropy in the power spectrum. Unlike the vector models, both $f_{NL}$ and $tau_{NL}$ vanish in the squeezed limit. However, the estimator $f_{NL}$ can reach the order of 10 in the equilateral and enfolded limits. These results are consistent with the latest bounds on $f_{NL}$ constrained by Planck.
We study scalar-tensor-tensor cross correlation $langle zeta hh rangle$ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mixing terms in a non-perturbative manner. Combining that with the in-in formalism, we compute contributions from cubic interactions to the bispectrum $B_{zeta hh}$. We find that the bispectrum is peaked at the folded configuration, which is a unique feature encoded by the scalar mixing and localized production of tensor modes. With our parameter choice, the amplitude of the bispectrum is $k^6 B_{zeta hh} sim 10^{-16}$. The unique shape dependence, together with the parity-violating nature, is thus a distinguishing feature to search for in the CMB observables.