No Arabic abstract
We study scalar-tensor-tensor cross correlation $langle zeta hh rangle$ generated by the dynamics of interacting axion and SU(2) gauge fields during inflation. We quantize the quadratic action and solve the linear equations by taking into account mixing terms in a non-perturbative manner. Combining that with the in-in formalism, we compute contributions from cubic interactions to the bispectrum $B_{zeta hh}$. We find that the bispectrum is peaked at the folded configuration, which is a unique feature encoded by the scalar mixing and localized production of tensor modes. With our parameter choice, the amplitude of the bispectrum is $k^6 B_{zeta hh} sim 10^{-16}$. The unique shape dependence, together with the parity-violating nature, is thus a distinguishing feature to search for in the CMB observables.
We study the scalar-tensor-tensor non-Gaussian signal in an inflationary model comprising also an axion coupled with SU(2) gauge fields. In this set-up, metric fluctuations are sourced by the gauge fields already at the linear level providing an enhanced chiral gravitational waves spectrum. The same mechanism is at work in generating an amplitude for the three-point function that is parametrically larger than in standard single-field inflation.
We show that an inflation model in which a spectator axion field is coupled to an SU(2) gauge field produces a large three-point function (bispectrum) of primordial gravitational waves, $B_{h}$, on the scales relevant to the cosmic microwave background experiments. The amplitude of the bispectrum at the equilateral configuration is characterized by $B_{h}/P_h^2=mathcal{O}(10)times Omega_A^{-1}$, where $Omega_A$ is a fraction of the energy density in the gauge field and $P_h$ is the power spectrum of gravitational waves produced by the gauge field.
We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for $3lesssim m_Qlesssim 4$, where $m_Q$ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio $B_h/P^2_h$, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large $m_Q$ regions of the parameter space, whereas the power spectrum constrains small $m_Q$ regions.
We study an inflationary scenario with a two-form field to which an inflaton couples non-trivially. First, we show that anisotropic inflation can be realized as an attractor solution and that the two-form hair remains during inflation. A statistical anisotropy can be developed because of a cumulative anisotropic interaction induced by the background two-form field. The power spectrum of curvature perturbations has a prolate-type anisotropy, in contrast to the vector models having an oblate-type anisotropy. We also evaluate the bispectrum and trispectrum of curvature perturbations by employing the in-in formalism based on the interacting Hamiltonians. We find that the non-linear estimators $f_{NL}$ and $tau_{NL}$ are correlated with the amplitude $g_*$ of the statistical anisotropy in the power spectrum. Unlike the vector models, both $f_{NL}$ and $tau_{NL}$ vanish in the squeezed limit. However, the estimator $f_{NL}$ can reach the order of 10 in the equilateral and enfolded limits. These results are consistent with the latest bounds on $f_{NL}$ constrained by Planck.
The non-Gaussian distribution of primordial perturbations has the potential to reveal the physical processes at work in the very early Universe. Local models provide a well-defined class of non-Gaussian distributions that arise naturally from the non-linear evolution of density perturbations on super-Hubble scales starting from Gaussian field fluctuations during inflation. I describe the delta-N formalism used to calculate the primordial density perturbation on large scales and then review several models for the origin of local primordial non-Gaussianity, including the cuvaton, modulated reheating and ekpyrotic scenarios. I include an appendix with a table of sign conventions used in specific papers.