Do you want to publish a course? Click here

Phenomenology of the Heavy Flavored spin 3/2 Baryons in Light Cone QCD

94   0   0.0 ( 0 )
 Added by Kazem Azizi
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Motivated by the results of the recent experimental discoveries for charm and bottom baryons, the masses and magnetic moments of the heavy baryons with $J^P=3/2^+$ containing a single heavy quark are studied within light cone QCD sum rules method. Our results on the masses of heavy baryons are in good agreement with predictions of other approaches, as well as with the existing experimental data.



rate research

Read More

Inspired by the results of recent experimental discoveries for charm and bottom baryons, the masses and magnetic moments of the heavy baryons with $J^P=3/2^+$ containing a single heavy quark are studied within light cone QCD sum rules method. Our results on the masses of heavy baryons are in good agreement with predictions of other approaches, as well as with the existing experimental values. Our predictions on the masses of the states, which are not yet discovered in the experiments, can be tested in the future experiments. A comparison of our results on the magnetic moments of these baryons and the hyper central model predictions is presented.
The magnetic moments of heavy sextet $J^P = {1over 2}^+$ baryons are calculated in framework of the light cone QCD sum rules method. Linearly independent relations among the magnetic moments of these baryons are obtained. The results for the magnetic moments of heavy baryons obtained in this work are compared with the predictions of the other approaches.
The magnetic moments of heavy $Xi_{Q}$ baryons containing a single charm or bottom quark are calculated in the framework of light cone QCD sum rules method. A comparison of our results with the predictions of the quark models is presented.
Using the calculated values of the strong coupling constants of the heavy sextet spin-3/2 baryons to sextet and antitriplet heavy spin-1/2 baryons with light mesons within the light cone QCD sum rules method, and vector meson dominance assumption, the radiative decay widths are calculated. These widths are compared with the direct radiative decay widths predicted in the framework of the light cone QCD sum rules.
We derive QCD light-cone sum rules for the hadronic matrix elements of the heavy baryon transitions to nucleon. In the correlation functions the $Lambda_c,Sigma_c$ and $Lambda_b$ -baryons are interpolated by three-quark currents and the nucleon distribution amplitudes are used. To eliminate the contributions of negative parity heavy baryons, we combine the sum rules obtained from different kinematical structures. The results are then less sensitive to the choice of the interpolating current. We predict the $Lambda_{b}to p$ form factor and calculate the widths of the $Lambda_{b}to pell u_l$ and $Lambda_{b}to p pi$ decays. Furthermore, we consider double dispersion relations for the same correlation functions and derive the light-cone sum rules for the $Lambda_cND^{(*)}$ and $Sigma_cND^{(*)}$ strong couplings. Their predicted values can be used in the models of charm production in $pbar{p}$ collisions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا