Do you want to publish a course? Click here

Origin of electromagnon excitations in textit{R}MnO$_3$

118   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The origin of electromagnon excitations in cycloidal textit{R}MnO$_3$ is explained in terms of the Heisenberg coupling between spins despite the fact that the static polarization arises from the much weaker Dzyaloshinskii-Moriya (DM) exchange interaction. We present a model that incorporates structural characteristics of this family of manganites that is confirmed by far infrared transmission data as a function of temperature and magnetic field and inelastic neutron scattering results. A deep connection is found between the magnetoelectric dynamics of the spiral phase and the static magnetoelectric coupling in the collinear E-phase of this family of manganites.



rate research

Read More

Recently, oxide multiferroics have attracted much attention due to their large magnetoelectric effect which allows the tuning of magnetic properties with electric field and vice versa and open new venues for future spintronic applications such as multiple-state memory devices with dual magnetic and electric control. BiFeO$_3$ (BFO) belongs to this new class of materials and shows both ferroelectric and antiferromagnetic orders at room temperature with a large electric polarizationassociated with a cycloidal spiral magnetic ordering. The incommensurate magnetic order induces magnon zone folding and allows investigations by optical probes of unusual spin waves which couples to optical phonons, the so called `electromagnons. Here, we unravel for the first time the electromagnon spectra of BFO by means low energy inelastic light scattering technique. We show the existence of two species of electromagnons corresponding to spin wave excitations in and out of the cycloidal plane. The present observations present an unique opportunity to study the interplay between ferroelectric and magnetic orders.
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability is found in the orbital order. In addition, a large hysteresis is observed that is caused by phase competition between insulating charge ordered and metallic ferromagnetic states. No magnetic phase transitions are observed in contrast to bulk, confirming the unique character of the superlattice. The deviation from the commensurate orbital order can be directly related to the decrease of ordered-layer thickness that leads to a decoupling of the orbital-ordered planes along the c axis.
The interactions between elementary excitations such as phonons, plasmons, magnons, or particle-hole pairs, drive emergent functionalities and electronic instabilities such as multiferroic behaviour, anomalous thermoelectric properties, polar order, or superconductivity. Whereas various hybrid excitations have been studied extensively, the feed-back of prototypical elementary excitations on the crystal electric fields (CEF), defining the environment in which the elementary excitations arise, has been explored for very strong coupling only. We report high-resolution neutron spectroscopy and ab-initio phonon calculations of {ceaual}, an archetypal fluctuating valence compound. The high resolution of our data allows us to quantify the energy scales of three coupling mechanisms between phonons, CEF-split localized 4f electron states, and conduction electrons. Although these interactions do not appear to be atypically strong for this class of materials, we resolve, for the first time, a profound renormalization of low-energy quasiparticle excitations on all levels. The key anomalies of the spectrum we observe comprise (1) the formation of a CEF-phonon bound state with a comparatively low density of acoustic phonons reminiscent of vibronic modes observed in other materials, where they require a pronounced abundance of optical phonons, (2) an anti-crossing of CEF states and acoustic phonons, and (3) a strong broadening of CEF states due to the hybridization with more itinerant excitations. The fact that all of these features are well resolved in CeAuAl$_3$ suggests that similar hybrid excitations should also be dominant in a large family of related materials. This promises a predictive understanding towards the discovery of new magneto-elastic functionalities and instabilities.
We demonstrate that small but finite ferroelectric polarization ($sim$0.01 $mu$C/cm$^2$) emerges in orthorhombic LuFeO$_3$ ($Pnma$) at $T_N$ ($sim$600 K) because of commensurate (k = 0) and collinear magnetic structure. The synchrotron x-ray and neutron diffraction data suggest that the polarization could originate from enhanced bond covalency together with subtle contribution from lattice. The theoretical calculations indicate enhancement of bond covalency as well as the possibility of structural transition to the polar $Pna2_1$ phase below $T_N$. The $Pna2_1$ phase, in fact, is found to be energetically favorable below $T_N$ in orthorhombic LuFeO$_3$ ($albeit$ with very small energy difference) than in isostructural and nonferroelectric LaFeO$_3$ or NdFeO$_3$. Application of electric field induces finite piezostriction in LuFeO$_3$ via electrostriction resulting in clear domain contrast images in piezoresponse force microscopy.
139 - S.Y. Zhou , Y. Zhu , M.C. Langner 2011
We present resonant soft X-ray scattering (RSXS) results from small band width manganites (Pr,Ca)MnO$_3$, which show that the CE-type spin ordering (SO) at the phase boundary is stabilized only below the canted antiferromagnetic transition temperature and enhanced by ferromagnetism in the macroscopically insulating state (FM-I). Our results reveal the fragility of the CE-type ordering that underpins the colossal magnetoresistance (CMR) effect in this system, as well as an unexpected cooperative interplay between FM-I and CE-type SO which is in contrast to the competitive interplay between the ferromagnetic metallic (FM-M) state and CE-type ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا