Do you want to publish a course? Click here

Towards a gauge-polyvalent Numerical Relativity code

172   0   0.0 ( 0 )
 Added by Carles Bona
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The gauge polyvalence of a new numerical code is tested, both in harmonic-coordinate simulations (gauge-waves testbed) and in singularity-avoiding coordinates (simple Black-Hole simulations, either with or without shift). The code is built upon an adjusted first-order flux-conservative version of the Z4 formalism and a recently proposed family of robust finite-difference high-resolution algorithms. An outstanding result is the long-term evolution (up to 1000M) of a Black-Hole in normal coordinates (zero shift) without excision.



rate research

Read More

We present the recent results of a research project aimed at constructing a robust wave extraction technique for numerical relativity. Our procedure makes use of Weyl scalars to achieve wave extraction. It is well known that, with a correct choice of null tetrad, Weyl scalars are directly associated to physical properties of the space-time under analysis in some well understood way. In particular it is possible to associate $Psi_4$ with the outgoing gravitational radiation degrees of freedom, thus making it a promising tool for numerical wave--extraction. The right choice of the tetrad is, however, the problem to be addressed. We have made progress towards identifying a general procedure for choosing this tetrad, by looking at transverse tetrads where $Psi_1=Psi_3=0$. As a direct application of these concepts, we present a numerical study of the evolution of a non-linearly disturbed black hole described by the Bondi--Sachs metric. This particular scenario allows us to compare the results coming from Weyl scalars with the results coming from the news function which, in this particular case, is directly associated with the radiative degrees of freedom. We show that, if we did not take particular care in choosing the right tetrad, we would end up with incorrect results.
The numerical evolution of Einsteins field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modelling black hole production in TeV gravity scenarios, analysis of the stability of exact solutions and tests of Cosmic Censorship. In order to investigate these questions, we extend numerical relativity to more general space-times than those investigated hitherto, by developing a framework to study the numerical evolution of D dimensional vacuum space-times with an SO(D-2) isometry group for Dge 5, or SO(D-3) for Dge 6. Performing a dimensional reduction on a (D-4)-sphere, the D dimensional vacuum Einstein equations are rewritten as a 3+1 dimensional system with source terms, and presented in the Baumgarte, Shapiro, Shibata and Nakamura (BSSN) formulation. This allows the use of existing 3+1 dimensional numerical codes with small adaptations. Brill-Lindquist initial data are constructed in D dimensions and a procedure to match them to our 3+1 dimensional evolution equations is given. We have implemented our framework by adapting the LEAN code and perform a variety of simulations of non-spinning black hole space-times. Specifically, we present a modified moving puncture gauge which facilitates long term stable simulations in D=5. We further demonstrate the internal consistency of the code by studying convergence and comparing numerical versus analytic results in the case of geodesic slicing for D=5,6.
We discuss a general formalism for numerically evolving initial data in general relativity in which the (complex) Ashtekar connection and the Newman-Penrose scalars are taken as the dynamical variables. In the generic case three gauge constraints and twelve reality conditions must be solved. The analysis is applied to a Petrov type {1111} planar spacetime where we find a spatially constant volume element to be an appropriate coordinate gauge choice.
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detection, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
401 - Edward Seidel , Wai-Mo Suen 1999
The astrophysics of compact objects, which requires Einsteins theory of general relativity for understanding phenomena such as black holes and neutron stars, is attracting increasing attention. In general relativity, gravity is governed by an extremely complex set of coupled, nonlinear, hyperbolic-elliptic partial differential equations. The largest parallel supercomputers are finally approaching the speed and memory required to solve the complete set of Einsteins equations for the first time since they were written over 80 years ago, allowing one to attempt full 3D simulations of such exciting events as colliding black holes and neutron stars. In this paper we review the computational effort in this direction, and discuss a new 3D multi-purpose parallel code called ``Cactus for general relativistic astrophysics. Directions for further work are indicated where appropriate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا