Do you want to publish a course? Click here

The Observation of Percolation-Induced 2D Metal-Insulator Transition in a Si MOSFET

121   0   0.0 ( 0 )
 Added by Lisa Tracy
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

By analyzing the temperature ($T$) and density ($n$) dependence of the measured conductivity ($sigma$) of 2D electrons in the low density ($sim10^{11}$cm$^{-2}$) and temperature (0.02 - 10 K) regime of high-mobility (1.0 and 1.5 $times 10^4$ cm$^2$/Vs) Si MOSFETs, we establish that the putative 2D metal-insulator transition is a density-inhomogeneity driven percolation transition where the density-dependent conductivity vanishes as $sigma (n) propto (n - n_p)^p$, with the exponent $p sim 1.2$ being consistent with a percolation transition. The `metallic behavior of $sigma (T)$ for $n > n_p$ is shown to be well-described by a semi-classical Boltzmann theory, and we observe the standard weak localization-induced negative magnetoresistance behavior, as expected in a normal Fermi liquid, in the metallic phase.



rate research

Read More

We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional (2D) moire multilayer transition metal dichalcogenides (mTMD) using Coulomb disorder in the environment as the underlying mechanism. In particular, carrier scattering by random charged impurities leads to an effective 2D MIT approximately controlled by the Ioffe-Regel criterion, which is qualitatively consistent with the experiments. We find the necessary disorder to be around $5$-$10times10^{10}$cm$^{-2}$ random charged impurities in order to quantitatively explain much, but not all, of the observed MIT phenomenology as reported by two different experimental groups. Our estimate is consistent with the known disorder content in TMDs.
A metal-insulator transition was induced by in-plane magnetic fields up to 27 T in homogeneously Sb-doped Si/SiGe superlattice structures. The localisation is not observed for perpendicular magnetic fields. A comparison with magnetoconductivity investigations in the weakly localised regime shows that the delocalising effect originates from the interaction-induced spin-triplet term in the particle-hole diffusion channel. It is expected that this term, possibly together with the singlet particle-particle contribution, is of general importance in disordered n-type Si bulk and heterostructures.
97 - I. Shlimak , E. Zion , A. Butenko 2019
A brief review of experiments directed to study a gradual localization of charge carriers and metal-insulator transition in samples of disordered monolayer graphene is presented. Disorder was induced by irradiation with different doses of heavy and light ions. Degree of disorder was controlled by measurements of the Raman scattering spectra. The temperature dependences of conductivity and magnetoresistance (MR) showed that at low disorder, conductivity is governed by the weak localization and antilocalization regime. Further increase of disorder leads to strong localization of charge carriers, when the conductivity is described by the variable-range-hopping (VRH) mechanism. It was observed that MR in the VRH regime is negative in perpendicular fields and is positive in parallel magnetic fields which allowed to reveal different mechanisms of hopping MR. Theoretical analysis is in a good agreement with experimental data.
The transversal and longitudinal resistance in the quantum Hall effect regime was measured in a Si MOSFET sample in which a slot-gate allows one to vary the electron density and filling factor in different parts of the sample. In case of unequal gate voltages, the longitudinal resistances on the opposite sides of the sample differ from each other because the originated Hall voltage difference is added to the longitudinal voltage only on one side depending on the gradient of the gate voltages and the direction of the external magnetic field. After subtracting the Hall voltage difference, the increase in longitudinal resistance is observed when electrons on the opposite sides of the slot occupy Landau levels with different spin orientations.
219 - S. Adam , S. Cho , M. S. Fuhrer 2008
Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the disorder induced length-scale), we predict that there should be a dimensional crossover to the 1D percolation universality class with observable signatures in the transport gap. In addition, there should be a crossover to the Boltzmann transport regime at high carrier densities. The measured conductivity exponent and the critical density are consistent with this percolation transition scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا