No Arabic abstract
A brief review of experiments directed to study a gradual localization of charge carriers and metal-insulator transition in samples of disordered monolayer graphene is presented. Disorder was induced by irradiation with different doses of heavy and light ions. Degree of disorder was controlled by measurements of the Raman scattering spectra. The temperature dependences of conductivity and magnetoresistance (MR) showed that at low disorder, conductivity is governed by the weak localization and antilocalization regime. Further increase of disorder leads to strong localization of charge carriers, when the conductivity is described by the variable-range-hopping (VRH) mechanism. It was observed that MR in the VRH regime is negative in perpendicular fields and is positive in parallel magnetic fields which allowed to reveal different mechanisms of hopping MR. Theoretical analysis is in a good agreement with experimental data.
Broadening of the Raman scattering (RS) spectra was studied in monolayer graphene samples irradiated with various dose of ions followed by annealing of radiation damage at different temperatures. It is shown that the width {Gamma} (full width at half maximum, FWHM) of three main RS lines (G-, D-, and 2D) increases linearly with increase of the density of irradiation-induced point defects N d as {Delta}{Gamma} = m N d . The slope m of the linear dependencies is the same for one-phonon emitting G-line and D-line, and almost double for two-phonon emitting 2D-line. It is also shown that the width of D-line {Gamma} D for all samples is larger than one half of the width of 2D-line {Gamma} 2D , which shows that in the case of D-line, elastic electron scattering on point defects leads to an additional decreasing the lifetime of the emitted phonon. Theoretical model of the width of D-line in disordered graphene is developed which explains the experimental observations and allows to determine the numerical coefficient in the in-plane transverse optic phonon dispersion in graphene.
We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional (2D) moire multilayer transition metal dichalcogenides (mTMD) using Coulomb disorder in the environment as the underlying mechanism. In particular, carrier scattering by random charged impurities leads to an effective 2D MIT approximately controlled by the Ioffe-Regel criterion, which is qualitatively consistent with the experiments. We find the necessary disorder to be around $5$-$10times10^{10}$cm$^{-2}$ random charged impurities in order to quantitatively explain much, but not all, of the observed MIT phenomenology as reported by two different experimental groups. Our estimate is consistent with the known disorder content in TMDs.
Here we show, with simultaneous transport and photoemission measurements, that the graphene terminated SiC(0001) surface undergoes a metal-insulator transition (MIT) upon dosingwith small amounts of atomic hydrogen. We find the room temperature resistance increases by about 4 orders of magnitude, a transition accompanied by anomalies in the momentum-resolved spectral function including a non-Fermi Liquid behaviour and a breakdown of the quasiparticle picture. These effects are discussed in terms of a possible transition to a strongly (Anderson) localized ground state.
The criticality of vacancy-induced metal-insulator transition (MIT) in graphene is investigated by Kubo-Greenwood formula with tight-binding recursion method. The critical vacancy concentration for the MIT is determined to be 0.053%. The scaling laws for transport properties near the critical point are examined showing several unconventional 2D localization behaviors. Our theoretical results have shed some new lights to the understanding of recent experiments in H-dosed graphene and of 2D disordered systems in general.
Impurities play an important role during recombination processes in semiconductors. Their important role is sharpened in atomically-thin transition-metal dichalcogenides whose two-dimensional character renders electrons and holes highly susceptible to localization caused by remote charged impurities. We study a multitude of phenomena that arise from the interaction of localized electrons with excitonic complexes. Emphasis is given to the amplification of the phonon-assisted recombination of biexcitons when it is mediated by localized electrons, showing that this mechanism can explain recent photoluminescence experiments in ML-WSe$_2$. In addition, the magnetic-field dependence of this mechanism is analyzed. The results of this work point to (i) an intriguing coupling between the longitudinal-optical and homopolar phonon modes that can further elucidate various experimental results, (ii) the physics behind a series of localization-induced optical transitions in tungsten-based materials, and (iii) the importance of localization centers in facilitating the creation of biexcitons and exciton-exciton annihilation processes.