No Arabic abstract
Magnetic platelets with a vortex configuration are attracting considerable attention. The discovery that excitation with small in-plane magnetic fields or spin polarised currents can switch the polarisation of the vortex core did not only open the possibility of using such systems in magnetic memories, but also initiated the fundamental investigation of the core switching mechanism itself. Micromagnetic models predict that the switching is mediated by a vortex-antivortex pair, nucleated in a dynamically induced vortex core deformation. In the same theoretical framework, a critical core velocity is predicted, above which switching occurs. Although these models are extensively studied and generally accepted, experimental support has been lacking until now. In this work, we have used high-resolution time-resolved X-ray microscopy to study the detailed dynamics in vortex structures. We could reveal the dynamic vortex core deformation preceding the core switching. Also, the threshold velocity could be measured, giving quantitative comparison with micromagnetic models.
Thin-film ferromagnetic disks present a vortex spin structure whose dynamics, added to the small size (~10 nm) of their core, earned them intensive study. Here we use a scanning nitrogen-vacancy (NV) center microscope to quantitatively map the stray magnetic field above a 1 micron-diameter disk of permalloy, unambiguously revealing the vortex core. Analysis of both probe-to-sample distance and tip motion effects through stroboscopic measurements, allows us to compare directly our quantitative images to micromagnetic simulations of an ideal structure. Slight perturbations with respect to the perfect vortex structure are clearly detected either due to an applied in-plane magnetic field or imperfections of the magnetic structures. This work demonstrates the potential of scanning NV microscopy to map tiny stray field variations from nanostructures, providing a nanoscale, non-perturbative detection of their magnetic texture.
A magnetic vortex occurs as an equilibrium configuration in thin ferromagnetic platelets of micron and sub-micron size and is characterised by an in-plane curling magnetisation. At the centre, a magnetic singularity is avoided by an out-of-plane magnetisation core. This core has a gyrotropic excitation mode, which corresponds to a circular motion of the vortex around its equilibrium position, where the rotation sense is determined by the direction of the vortex core magnetisation, its polarisation. Unlike linear fields or spin polarised currents, which excite both polarisation states, an in-plane rotating field can selectively excite one of the polarisation states. Here we report the observation of vortex dynamics in response to rotating magnetic fields, imaged with time-resolved scanning X-ray microscopy. We demonstrate that the rotating field only excites the gyrotropic mode if the rotation sense of the field coincides with the vortex gyration sense and that such a field can selectively reverse the vortex polarisation.
In a ferromagnetic nanodisk, the magnetization tends to swirl around in the plane of the disk and can point either up or down at the center of this magnetic vortex. This binary state can be useful for information storage. It is demonstrated that a single nanosecond current pulse can switch the core polarity. This method also provides the precise control of the core direction, which constitutes fundamental technology for realizing a vortex core memory.
Time-resolved soft X-ray transmission microscopy is applied to image the current-induced resonant dynamics of the magnetic vortex core realized in a micronsized Permalloy disk. The high spatial resolution better than 25 nm enables us to observe the resonant motion of the vortex core. The result also provides the spin polarization of the current to be 0.67 +/-0.16 for Permalloy by fitting the experimental results with an analytical model in the framework of the spin-transfer torque.
We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L$_3$ absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L$_3$ absorption edges.