We investigated Co/Cu lateral spin valves by means of high-resolution transmission soft x-ray microscopy with magnetic contrast that utilizes x-ray magnetic circular dichroism (XMCD). No magnetic XMCD contrast was observed at the Cu L$_3$ absorption edge, which should directly image the spin accumulation in Cu. Although electrical transport measurements in a non-local geometry clearly detected the spin accumulation in Cu, which remained unchanged during illumination with circular polarized x-rays at the Co and Cu L$_3$ absorption edges.
The spin absorption process in a ferromagnetic material depends on the spin orientation relativelyto the magnetization. Using a ferromagnet to absorb the pure spin current created within a lateralspin-valve, we evidence and quantify a sizeable orientation dependence of the spin absorption inCo, CoFe and NiFe. These experiments allow determining the spin-mixing conductance, an elusivebut fundamental parameter of the spin-dependent transport. We show that the obtained valuescannot be understood within a model considering only the Larmor, transverse decoherence and spindiffusion lengths, and rather suggest that the spin-mixing conductance is actually limited by theSharvin conductance.
The spin injection and accumulation in metallic lateral spin valves with transparent interfaces is studied using d.c. injection current. Unlike a.c.-based techniques, this allows investigating the effects of the direction and magnitude of the injected current. We find that the spin accumulation is reversed by changing the direction of the injected current, whereas its magnitude does not change. The injection mechanism for both current directions is thus perfectly symmetric, leading to the same spin injection efficiency for both spin types. This result is accounted for by a spin-dependent diffusion model. Joule heating increases considerably the local temperature in the spin valves when high current densities are injected ($sim$80--105 K for 1--2$times10^{7}$A cm$^{-2}$), strongly affecting the spin accumulation.
We employ the spin absorption technique in lateral spin valves to extract the spin diffusion length of Permalloy (Py) as a function of temperature and resistivity. A linear dependence of the spin diffusion length with conductivity of Py is observed, evidencing that Elliott-Yafet is the dominant spin relaxation mechanism in Permalloy. Completing the data set with additional data found in literature, we obtain $lambda_{Py}= (0.91pm 0.04) (fOmega m^2)/rho_{Py}$.
A high reproducibility in the performance of cobalt/copper and permalloy/copper lateral spin valves with transparent contacts is obtained by optimizing the interface quality and the purity of copper. This allows us to study comprehensively the spin injection properties of both ferromagnetic materials, as well as the spin transport properties of copper, which are not affected by the used ferromagnetic material, leading to long spin diffusion lengths. Spin polarizations of permalloy and cobalt are obtained as a function of temperature. Analysis of the temperature dependence of both the spin polarization and conductivity of permalloy using the standard two-channel model for ferromagnetic metals suggests that a correction factor of ~2 is needed for the spin polarization values obtained by lateral spin valve experiments.
We performed non-local electrical measurements of a series of Py/Cu lateral spin valve devices with different Cu thicknesses. We show that both the spin diffusion length of Cu and the apparent spin polarization of Py increase with Cu thickness. By fitting the results to a modified spin-diffusion model, we show that the spin diffusion length of Cu is dominated by spin-flip scattering at the surface. In addition, the dependence of spin polarization of Py on Cu thickness is due to a strong spin-flip scattering at the Py/Cu interface.