Do you want to publish a course? Click here

Galois groups over function fields of positive characteristic

167   0   0.0 ( 0 )
 Added by John McKay
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

We describe examples motivated by the work of Serre and Abhyankar.



rate research

Read More

121 - Rod Gow , Gary McGuire 2021
Let $F$ be any field. We give a short and elementary proof that any finite subgroup $G$ of $PGL(2,F)$ occurs as a Galois group over the function field $F(x)$. We also develop a theory of descent to subfields of $F$. This enables us to realize the automorphism groups of finite subgroups of $PGL(2,F)$ as Galois groups.
In this paper we generalize results of P. Le Duff to genus n hyperelliptic curves. More precisely, let C/Q be a hyperelliptic genus n curve and let J(C) be the associated Jacobian variety. Assume that there exists a prime p such that J(C) has semistable reduction with toric dimension 1 at p. We provide an algorithm to compute a list of primes l (if they exist) such that the Galois representation attached to the l-torsion of J(C) is surjective onto the group GSp(2n, l). In particular we realize GSp(6, l) as a Galois group over Q for all primes l in [11, 500000].
In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Sp(n, l). This result is for instance useful for proving big image results for symplectic Galois representations.
72 - Daniel C. Mayer 2020
For each odd prime p>=5, there exist finite p-groups G with derived quotient G/D(G)=C(p)xC(p) and nearly constant transfer kernel type k(G)=(1,2,...,2) having two fixed points. It is proved that, for p=7, this type k(G) with the simplest possible case of logarithmic abelian quotient invariants t(G)=(11111,111,21,21,21,21,21,21) of the eight maximal subgroups is realized by exactly 98 non-metabelian Schur sigma-groups S of order 7^11 with fixed derived length dl(S)=3 and metabelianizations S/D(D(S)) of order 7^7. For p=5, the type k(G) with t(G)=(2111,111,21,21,21,21) leads to infinitely many non-metabelian Schur sigma-groups S of order at least 5^14 with unbounded derived length dl(S)>=3 and metabelianizations S/D(D(S)) of fixed order 5^7. These results admit the conclusion that d=-159592 is the first known discriminant of an imaginary quadratic field with 7-class field tower of precise length L=3, and d=-90868 is a discriminant of an imaginary quadratic field with 5-class field tower of length L>=3, whose exact length remains unknown.
234 - Benjamin L. Weiss 2014
We estimate several probability distributions arising from the study of random, monic polynomials of degree $n$ with coefficients in the integers of a general $p$-adic field $K_{mathfrak{p}}$ having residue field with $q= p^f$ elements. We estimate the distribution of the degrees of irreducible factors of the polynomials, with tight error bounds valid when $q> n^2+n$. We also estimate the distribution of Galois groups of such polynomials, showing that for fixed $n$, almost all Galois groups are cyclic in the limit $q to infty$. In particular, we show that the Galois groups are cyclic with probability at least $1 - frac{1}{q}$. We obtain exact formulas in the case of $K_{mathfrak{p}}$ for all $p > n$ when $n=2$ and $n=3$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا