Do you want to publish a course? Click here

Spin-triplet f-wave pairing due to three-site cyclic-exchange ferromagnetic interactions

265   0   0.0 ( 0 )
 Added by Satoshi Nishimoto
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ferromagnetiam and superconductivity in a two-dimensional triangular-lattice Hubbard model are studied using the density-matrix renormalization group method. We propose a mechanism of the {it f}-wave spin-triplet pairing derived from the three-site cyclic-exchange ferromagnetic interactions. We point out that a triangular network of hopping integrals, which is required for the three-site cyclic hopping processes, is contained in the (possibly) spin-triplet superconducting systems, such as Bechgaard salts (TMTSF)$_2$X, cobalt oxide Na$_{0.35}$CoO$_2$$cdot$1.3H$_2$O, and layered perovskite Sr$_2$RuO$_4$.



rate research

Read More

92 - Jozef Spalek 2000
We discuss general implications of the local spin-triplet pairing among fermions induced by local ferromagnetic exchange, example of which is the Hunds rule coupling. The quasiparticle energy and their wave function are determined for the three principal phases with the gap, which is momentum independent. We utilize the Bogolyubov-Nambu-De Gennes approach, which in the case of triplet pairing in the two-band case leads to the four-components wave function. Both gapless modes and those with an isotropic gap appear in the quasiparticle spectrum. A striking analogy with the Dirac equation is briefly explored. This type of pairing is relevant to relativistic fermions as well, since it reflects the fundamental discrete symmetry-particle interchange. A comparison with the local interband spin-singlet pairing is also made.
111 - Q. K. Tang , L. Yang , D. Wang 2018
We investigate the twisted bilayer graphene by a two-orbital Hubbard model on the honeycomb lattice. The model is studied near 1/4 band filling by using the singular-mode functional renormalization group theory. Spin-triplet $f$-wave pairing is found from weak to moderate coupling limit of the local interactions, and is associated with the Hunds rule coupling and incommensurate spin fluctuations at moderate momenta.
The spin-triplet state is most likely realized in uranium ferromagnetic superconductors, UGe2, URhGe, UCoGe. The microscopic coexistence of ferromagnetism and superconductivity means that the Cooper pair should be realized under the strong internal field due the ferromagnetism, leading to the spin-triplet state with equal spin pairing. The field-reinforced superconductivity, which is observed in all three materials when the ferromagnetic fluctuations are enhanced, is one of the strong evidences for the spin-triplet superconductivity. We present here the results of a newly discovered spin-triplet superconductor, UTe2, and compare those with the results of ferromagnetic superconductors. Although no magnetic order is found in UTe2, there are similarities between UTe2 and ferromagnetic superconductors. For example, the huge upper critical field exceeding the Pauli limit and the field-reentrant superconductivity for H || b-axis are observed in UTe2, URhGe and UCoGe. We also show the specific heat results on UTe2 in different quality samples, focusing on the residual density of states in the superconducting phase.
136 - A. A. Aligia 2018
Starting from the three-band Hubbard model for the cuprates, we calculate analytically the four-spin cyclic exchange in the limit of infinite on-site Coulomb repulsion and zero O-O hopping $t_{pp}$ using two methods: i) perturbation theory in $t_{pd}/Delta$, where $t_{pd}$ is the Cu-O hopping and $Delta$ the Cu-O charge transfer energy and ii) exact solution of a Cu$_4$O$_4$ plaquette. The latter method coincides with the first to order eight in $t_{pd}$ and permits to extend the results to $t_{pd}/Delta$ of order one. The results are relevant to recent experimental and theoretical research that relate the splitting of certain spin excitations with $Delta$ and the superconducting critical temperature.
211 - N. M. Plakida 2004
A microscopic theory of superconductivity is formulated within an effective $p$-$d$ Hubbard model for a CuO2 plane. By applying the Mori-type projection technique, the Dyson equation is derived for the Green functions in terms of Hubbard operators. The antiferromagnetic exchange caused by interband hopping results in pairing of all carries in the conduction subband and high Tc proportional to the Fermi energy. Kinematic interaction in intraband hopping is responsible for the conventional spin-fluctuation pairing. Numerical solution of the gap equation proves the d-wave gap symmetry and defines Tc doping dependence. Oxygen isotope shift and pressure dependence of Tc are also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا