Do you want to publish a course? Click here

Theory of magnetic field-induced metaelectric critical end point in BiMn$_2$O$_5$

209   0   0.0 ( 0 )
 Added by Jung Hoon Han
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

A recent experiment on the multiferroic BiMn$_2$O$_5$ compound under a strong applied magnetic field revealed a rich phase diagram driven by the coupling of magnetic and charge (dipolar) degrees of freedom. Based on the exchange-striction mechanism, we propose here a theoretical model with the intent to capture the interplay of the spin and dipolar moments in the presence of a magnetic field in BiMn$_2$O$_5$. Experimentally observed behavior of the dielectric constants, magnetic susceptibility, and the polarization is, for the most part, reproduced by our model. The critical behavior observed near the polarization reversal $(P=0)$ point in the phase diagram is interpreted as arising from the proximity to the critical end point.



rate research

Read More

The electrocaloric effect (ECE), i.e., the reversible temperature change due to the adiabatic variation of the electric field, is of great interest due to its potential technological applications. Based on entropy arguments, we present a new framework to attain giant ECE. Our findings are fourfold: $i$) we employ the recently-proposed electric Gruneisen parameter $Gamma_E$ to quantify the ECE and discuss its advantages over the existing so-called electrocaloric strength; $ii$) prediction of giant caloric effects $close$ to $any$ critical end point; $iii$) proposal of potential key-ingredients to enhance the ECE; $iv$) demonstration of $Gamma_E$ as a proper parameter to probe quantum ferroelectricity in connection with the celebrated Barretts formula. Our findings enable us to interpret the recently-reported large ECE at room-temperature in oxide multilayer capacitors [Nature 575, 468 (2019)], paving thus the way for new venues in the field.
Entanglement of two different quantum orders is of an interest of the modern condensed matter physics. One of the examples is the dynamical multiferroicity, where fluctuations of electric dipoles lead to magnetization. We investigate this effect at finite temperature and demonstrate an elevated magnetic response of a ferroelectric near the ferroelectric quantum critical point (FE QCP). We calculate the magnetic susceptibility of a bulk sample on the paraelectric side of the FE QCP at finite temperature and find enhanced magnetic susceptibility near the FE QCP. We propose quantum paraelectric strontium titanate (STO) as a candidate material to search for dynamic multiferroicity. We estimate the magnitude of the magnetic susceptibility for this material and find that it is detectable experimentally.
Quantum criticality in the normal and superconducting state of the heavy-fermion metal CeCoIn$_5$ is studied by measurements of the magnetic Gr{u}neisen ratio, $Gamma_H$, and specific heat in different field orientations and temperatures down to 50 mK. Universal temperature over magnetic field scaling of $Gamma_H$ in the normal state indicates a hidden quantum critical point at zero field. Within the superconducting state the quasiparticle entropy at constant temperature increases upon reducing the field towards zero, providing additional evidence for zero-field quantum criticality.
The study of abrupt increases in magnetization with magnetic field known as metamagnetic transitions has opened a rich vein of new physics in itinerant electron systems, including the discovery of quantum critical end points with a marked propensity to develop new kinds of order. However, the electric analogue of the metamagnetic critical end point, a metaelectric critical end point has not yet been realized. Multiferroic materials wherein magnetism and ferroelectricity are cross-coupled are ideal candidates for the exploration of this novel possibility using magnetic-field (emph{H}) as a tuning parameter. Herein, we report the discovery of a magnetic-field-induced metaelectric transition in multiferroic BiMn$_{2}$O$_{5}$ in which the electric polarization (emph{P}) switches polarity along with a concomitant Mn spin-flop transition at a critical magnetic field emph{H}$_{rm c}$. The simultaneous metaelectric and spin-flop transitions become sharper upon cooling, but remain a continuous crossover even down to 0.5 K. Near the emph{P}=0 line realized at $mu_{0}$emph{H}$_{rm c}$$approx$18 T below 20 K, the dielectric constant ($varepsilon$) increases significantly over wide field- and temperature (emph{T})-ranges. Furthermore, a characteristic power-law behavior is found in the emph{P}(emph{H}) and $varepsilon$(emph{H}) curves at emph{T}=0.66 K. These findings indicate that a magnetic-field-induced metaelectric critical end point is realized in BiMn$_2$O$_5$ near zero temperature.
CoSe$_2$O$_5$ has a crystal structure consisting of zig-zag chains of edge shared CoO$_6$ octahedra running along the c axis, with the chains separated by Se$_2$O$_5^{2-}$ units. Magnetic susceptibility measurements indicate a transition at 8.5 K to an ordered state. We investigate here the nature of this magnetic ordering using magnetization and specific heat measurements in addition to powder neuttron diffraction. A transition to long-range antiferromagnetic order is found below $T_N$ = 8.5 K as identified by magnetic susceptibility measurements and magnetic Bragg reflections, with a propagation vector $mathbf{k}$ = 0. The magnetic structure shows that the moments align perpendicular to the c-axis, but with the spins canting with respect to the a axis by, alternately, $+8^circ$ and $-8^circ$. Interestingly, the low-field magnetic susceptibility does not show the anticipated cusp-like behavior expected for a well-ordered antiferromagnet. When the susceptibility is acquired under field-cooling conditions under a 10 kOe field, the the usual downturn expected for antiferromagnetic ordering is obtained. Heat capacity measurements at low temperatures indicate the presence of gapped behavior with a gap of 6.5 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا