No Arabic abstract
Comparisons between the redshifts of spectral lines from cosmologically-distant galaxies can be used to probe temporal changes in low-energy fundamental constants like the fine structure constant and the proton-electron mass ratio. In this article, I review the results from, and the advantages and disadvantages of, the best techniques using this approach, before focussing on a new method, based on conjugate satellite OH lines, that appears to be less affected by systematic effects and hence holds much promise for the future.
We propose that the constants of Nature we observe (which appear as parameters in the classical action) are quantum observables in a kinematical Hilbert space. When all of these observables commute, our proposal differs little from the treatment given to classical parameters in quantum information theory, at least if we were to inhabit a constants eigenstate. Non-commutativity introduces novelties, due to its associated uncertainty and complementarity principles, and it may even preclude hamiltonian evolution. The system typically evolves as a quantum superposition of hamiltonian evolutions resulting from a diagonalization process, and these are usually quite distinct from the original one (defined in terms of the non-commuting constants). We present several examples targeting $G$, $c$ and $Lambda $, and the dynamics of homogeneous and isotropic Universes. If we base our construction on the Heisenberg algebra and the quantum harmonic oscillator, the alternative dynamics tends to silence matter (effectively setting $G$ to zero), and make curvature and the cosmological constant act as if their signs are reversed. Thus, the early Universe expands as a quantum superposition of different Milne or de Sitter expansions for all material equations of state, even though matter nominally dominates the density, $rho $, because of the negligible influence of $Grho $ on the dynamics. A superposition of Einstein static universes can also be obtained. We also investigate the results of basing our construction on the algebra of $SU(2)$, into which we insert information about the sign of a constant of Nature, or whether its action is switched on or off. In this case we find examples displaying quantum superpositions of bounces at the initial state for the Universe.
We estimate the cosmological variation of the proton-to-electron mass ratio mu=m_p/m_e by measuring the wavelengths of molecular hydrogen transitions in the early universe. The analysis is performed using high spectral resolution observations (FWHM ~ 7 km/s) of two damped Lyman-alpha systems at z_{abs}=2.3377 and 3.0249 observed along the lines of sight to the quasars Q 1232+082 and Q 0347-382 respectively. The most conservative result of the analysis is a possible variation of mu over the last ~ 10 Gyrs, with an amplitude Deltamu/mu = (5.7+-3.8)x10^{-5}. The result is significant at the 1.5sigma level only and should be confirmed by further observations. This is the most stringent estimate of a possible cosmological variation of mu obtained up to now.
We discuss the fundamemtal constants in the Standard Model of particle physics, in particular possible changes of these constants on the cosmological time scale. The Grand Unification of the observed strong, electromagnetic and weak interactions implies relations between time variation of the finestructure constant alpha and the QCD scale $Lambda_c$. The astrophysical observation of a variation implies a time variation of $10^{-15} / year$. Several experiments in Quantum Optics, which were designed to look for a time variation of $Lambda_c$, are discussed.
We discuss the fundamental constants of physics in the Standard Model and possible changes of these constants on the cosmological time scale. The Grand Unification of the strong, electromagnetic and weak interactions implies relations between the time variation of the finestructure constant and of the QCD scale. An experiment in quantum optics at the MPQ in Munich, which was designed to look for a time variation of the QCD scale, is discussed.
The values of the fundamental constants such as $mu = m_P/m_e$, the proton to electron mass ratio and $alpha$, the fine structure constant, are sensitive to the product $sqrt{zeta_x^2(w+1)}$ where $zeta_x$ is a coupling constant between a rolling scalar field responsible for the acceleration of the expansion of the universe and the electromagnetic field with x standing for either $mu$ or $alpha$. The dark energy equation of state $w$ can assume values different than $-1$ in cosmologies where the acceleration of the expansion is due to a scalar field. In this case the value of both $mu$ and $alpha$ changes with time. The values of the fundamental constants, therefore, monitor the equation of state and are a valuable tool for determining $w$ as a function of redshift. In fact the rolling of the fundamental constants is one of the few definitive discriminators between acceleration due to a cosmological constant and acceleration due to a quintessence rolling scalar field. $w$ is often given in parameterized form for comparison with observations. In this manuscript the predicted evolution of $mu$, is calculated for a range of parameterized equation of state models and compared to the observational constraints on $Delta mu / mu$. We find that the current limits on $Delta mu / mu$ place significant constraints on linear equation of state models and on thawing models where $w$ deviates from $-1$ at late times. They also constrain non-dynamical models that have a constant $w$ not equal to $-1$. These constraints are an important compliment to geometric tests of $w$ in that geometric tests are sensitive to the evolution of the universe before the epoch of observation while fundamental constants are sensitive to the evolution of the universe after the observational epoch. Abstract truncated.