No Arabic abstract
In order to elucidate origin of the Galactic Ridge X-ray Emission, we analyzed Suzaku data taken at various regions along the Galactic plane and studied their Fe-K emission line features. Suzaku resolved the Fe line complex into three narrow lines at ~6.4 keV,~6.7 keV and ~6.97 keV, which are K-lines from neutral (or low-ionized), He-like, and H-like iron ions, respectively. The 6.7 keV line is clearly seen in all the observed regions and its longitudinal distribution is consistent with that determined from previous observations. The 6.4 keV emission line was also found in various Galactic plane regions (b~0). Differences in flux ratios of the 6.4 keV/6.7 keV and 6.97 keV/6.7 keV lines between the Galactic plane and the Galactic center regions are studied and its implication is discussed.
We have surveyed spatial profiles of the Fe K$alpha$ lines in the Galactic center diffuse X-rays (GCDX), including the transient region from the GCDX to the Galactic ridge X-ray emission (GRXE), with the Suzaku satellite. We resolved Fe K$alpha$ line complex into three lines of Fe emissiontype{I}, Fe emissiontype{XXV} and Fe emissiontype{XXVI} K$alpha$, and obtained their spatial intensity profiles with the resolution of $sim timeform{0D.1}$. We compared the Fe emissiontype{XXV} K$alpha$ profile with a stellar mass distribution (SMD) model made from near infrared observations. The intensity profile of Fe emissiontype{XXV} K$alpha$ is nicely fitted with the SMD model in the GRXE region, while that in the GCDX region shows $3.8pm0.3$ $(timeform{0D.2}<|l|<timeform{1D.5})$ or $19pm6$ $(|l|<timeform{0D.2})$ times excess over the best-fit SMD model in the GRXE region. Thus Fe emissiontype{XXV} K$alpha$ in the GCDX is hardly explained by the same origin of the GRXE. In the case of point source origin, a new population with the extremely strong Fe emissiontype{XXV} K$alpha$ line is required. An alternative possibility is that the majority of the GCDX is truly diffuse optically thin thermal plasma.
Compelling evidence for the existence of astrophysical neutrinos has been reported by the IceCube collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices are set. This constrains the number of IceCube events possibly originating from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to associated IceCube High Energy Starting Events is excluded at 90% confidence level.
Diffuse VHE gamma radiation from the Galactic Centre ridge observed by the H.E.S.S. telescope has been convincingly linked with the propagation of recently accelerated cosmic rays that interact with molecular hydrogen clouds during their diffusion. Through a series of time-dependent simulations of that diffusion for different propagation parameters we have obtained the most probable values of the diffusion coefficient for the Galactic Centre region. Assuming that the diffusion coefficient is of the form kappa(E) = kappa_0*(E/E_0)^delta, then for different optimal combinations of kappa_0 and delta its value is obtained for cosmic rays originating from a central point (possibly Sgr A East) 10 kyr ago.
We report the diffuse X-ray emissions from the Sgr A and B regions observed with Suzaku. From the Sgr A region, we found many K-shell transition lines of iron and nickel. The brightest are K alpha lines from FeI, FeXXV and FeXXVI at 6.4 keV, 6.7 keV and 6.9 keV. In addition, K alpha lines of NiI and NiXXVII, K beta of FeI, FeXXV and FeXXVI, and K gamma of FeXXV and FeXXVI are detected for the first time. The center energy of K alpha of FeXXV favors collisional excitation as the origin for this line emission. The ionization temperature determined from the flux ratio of K alpha of FeXXV and FeXXVI is similar to the electron temperature determined from the flux ratio of K alpha and K beta of FeXXV, which are in the range of 5-7 keV. Consequently, the Galactic Center diffuse X-rays (GCDX) are consistent with emission from a plasma nearly in ionization equilibrium. The radio complex Sgr B region also exhibits K alpha lines of FeI, FeXXV and FeXXVI. The 6.7 keV line (FeXXV) map exhibits a local excess at (l,b) = (0.612, 0.01), and could be a new young SNR. The 6.4 keV image is clumpy with local excesses near Sgr B2 and at (l,b) = (0.74, -0.09). Like Sgr B2, this latter excess may be another X-ray reflection Nebulae (XRN).
Initial results on the iron K-shell line and reflection component in several AGN observed as part of the Suzaku Guaranteed time program are reviewed. This paper discusses a small sample of Compton-thin Seyferts observed to date with Suzaku; namely MCG -5-23-16, MCG -6-30-15, NGC 4051, NGC 3516, NGC 2110, 3C 120 and NGC 2992. The broad iron K$alpha$ emission line appears to be present in all but one of these Seyfert galaxies, while the narrow core of the line from distant matter is ubiquitous in all the observations. The iron line in MCG -6-30-15 shows the most extreme relativistic blurring of all the objects, the red-wing of the line requires the inner accretion disk to extend inwards to within 2.2Rg of the black hole, in agreement with the XMM-Newton observations. Strong excess emission in the Hard X-ray Detector (HXD) above 10 keV is observed in many of these Seyfert galaxies, consistent with the presence of a reflection component from reprocessing in Compton-thick matter (e.g. the accretion disk). Only one Seyfert galaxy (NGC 2110) shows neither a broad iron line nor a reflection component. The spectral variability of MCG -6-30-15, MCG -5-23-16 and NGC 4051 is also discussed. In all 3 cases, the spectra appear harder when the source is fainter, while there is little variability of the iron line or reflection component with source flux. This agrees with a simple two component spectral model, whereby the variable emission is the primary power-law, while the iron line and reflection component remain relatively constant.