Diffuse VHE gamma radiation from the Galactic Centre ridge observed by the H.E.S.S. telescope has been convincingly linked with the propagation of recently accelerated cosmic rays that interact with molecular hydrogen clouds during their diffusion. Through a series of time-dependent simulations of that diffusion for different propagation parameters we have obtained the most probable values of the diffusion coefficient for the Galactic Centre region. Assuming that the diffusion coefficient is of the form kappa(E) = kappa_0*(E/E_0)^delta, then for different optimal combinations of kappa_0 and delta its value is obtained for cosmic rays originating from a central point (possibly Sgr A East) 10 kyr ago.
The inner 10 pc of our galaxy contains many counterpart candidates of the very high energy (VHE; > 100 GeV) gamma-ray point source HESS J1745-290. Within the point spread function of the H.E.S.S. measurement, at least three objects are capable of accelerating particles to very high energies and beyond, and of providing the observed gamma-ray flux. Previous attempts to address this source confusion were hampered by the fact that the projected distances between those objects were of the order of the error circle radius of the emission centroid (34, dominated by the pointing uncertainty of the H.E.S.S. instrument). Here we present H.E.S.S. data of the Galactic Centre region, recorded with an improved control of the instrument pointing compared to H.E.S.S. standard pointing procedures. Stars observed during gamma-ray observations by optical guiding cameras mounted on each H.E.S.S. telescope are used for off-line pointing calibration, thereby decreasing the systematic pointing uncertainties from 20 to 6 per axis. The position of HESS J1745-290 is obtained by fitting a multi-Gaussian profile to the background-subtracted gamma-ray count map. A spatial comparison of the best-fit position of HESS J1745-290 with the position and morphology of candidate counterparts is performed. The position is, within a total error circle radius of 13, coincident with the position of the supermassive black hole Sgr A* and the recently discovered pulsar wind nebula candidate G359.95-0.04. It is significantly displaced from the centroid of the supernova remnant Sgr A East, excluding this object with high probability as the dominant source of the VHE gamma-ray emission.
We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-$Lstar$ starburst, and $Lstar$ galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of $gamma$-ray emission from nearby and starburst galaxies. We reproduce the $gamma$-ray observations of dwarf and $Lstar$ galaxies with constant isotropic diffusion coefficient $kappa sim 3times 10^{29},{rm cm^{2},s^{-1}}$. Advection-only and streaming-only models produce order-of-magnitude too large $gamma$-ray luminosities in dwarf and $Lstar$ galaxies. We show that in models that match the $gamma$-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for $gamma$-ray emissivities. Models where CRs are ``trapped in the star-forming disk have lower star formation efficiency, but these models are ruled out by $gamma$-ray observations. For models with constant $kappa$ that match the $gamma$-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.
The Tibet ASgamma experiment just reported their measurement of sub-PeV diffuse gamma ray emission from the Galactic disk, with the highest energy up to 957 TeV. These gamma-rays are most likely the hadronic origin by cosmic ray interaction with interstellar gas in the Galaxy. This measurement provides direct evidence to the hypothesis that the Galactic cosmic rays can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum within cosmic rays diffusive propagation model. We find there is a tension between the sub-PeV diffuse gamma rays and the local cosmic ray spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local cosmic-ray flux than measurement in the knee region. We further calculate the PeV neutrino flux from the cosmic ray propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic neutrinos only account for less than ~15% of observed flux, most of which are still from extragalactic sources.
The Picard code for the numerical solution of the Galactic cosmic ray propagation problem allows for high-resolution models that acknowledge the 3D structure of our Galaxy. Picard was used to determine diffuse gamma-ray emission of the Galaxy over the energy range from 100 MeV to 100 TeV. We discuss the impact of a cosmic-ray source distribution aligned with the Galactic spiral arms for a range of such spiral-arm models. As expected, the impact on the gamma-ray emission is most distinct in the inverse-Compton channel, where imprints of the spiral arms are visible and yield predictions that are no longer symmetric to the rotational axis of the Milkyway. We will illustrate these differences by a direct comparison to results from previous axially symmetric Galactic propagation models: we find differences in the gamma-ray flux both on global scales and on local scales related to the spiral arm tangents. We compare gamma-ray flux and spectra at on-arm vs. off-arm projections and characterize the differences to axially symmetric models.
Context. Recently, the high-energy (HE, 0.1-100 GeV) $gamma$-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic $gamma$-ray binary. Aims. This work aims at the detection of very-high-energy (VHE, >100 GeV) $gamma$-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Energy spectra are obtained for the orbit-averaged data set, and for the orbital phase bin around the VHE maximum. Results. VHE $gamma$-ray emission is detected with a statistical significance of 6.4 $sigma$. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the $1-10$ TeV energy range is $(1.4 pm 0.2) times 10^{35}$ erg/s. A luminosity of $(5 pm 1) times 10^{35}$ erg/s is reached during 20% of the orbit. HE and VHE $gamma$-ray emissions are anti-correlated. LMC P3 is the most luminous $gamma$-ray binary known so far.
S. Dimitrakoudis
,A. Mastichiadis
,A. Geranios
.
(2008)
.
"Simulation of Cosmic Ray propagation in the Galactic Centre Ridge in Accordance with Observed VHE gamma-ray Emission"
.
Stavros Dimitrakoudis
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا