No Arabic abstract
We examine hilltop quintessence models, in which the scalar field is rolling near a local maximum in the potential, and w is close to -1. We first derive a general equation for the evolution of the scalar field in the limit where w is close to -1. We solve this equation for the case of hilltop quintessence to derive w as a function of the scale factor; these solutions depend on the curvature of the potential near its maximum. Our general result is in excellent agreement (delta w < 0.5%) with all of the particular cases examined. It works particularly well (delta w < 0.1%) for the pseudo-Nambu-Goldstone Boson potential. Our expression for w(a) reduces to the previously-derived slow-roll result of Sen and Scherrer in the limit where the curvature goes to zero. Except for this limiting case, w(a) is poorly fit by linear evolution in a.
We present an Effective Field Theory based reconstruction of quintessence models of dark energy directly from cosmological data. We show that current cosmological data possess enough constraining power to test several quintessence model properties for redshifts $zin [0,1.5]$ with no assumptions about the behavior of the scalar field potential. We use measurements of the cosmic microwave background, supernovae distances, and the clustering and lensing of galaxies to constrain the evolution of the dark energy equation of state, Swampland Conjectures, the shape of the scalar field reconstructed potential, and the structure of its phase space. The standard cosmological model still remains favored by data and, within quintessence models, deviations from its expansion history are bounded to be below the 10% level at 95% confidence at any redshift below $z=1.5$.
It has been shown that black holes would have formed in the early Universe if, on any given scale, the spectral amplitude of the Cosmic Microwave Background (CMB) exceeds 10^(-4). This value is within the bounds allowed by astrophysical phenomena for the small scale spectrum of the CMB, corresponding to scales which exit the horizon at the end of slow-roll inflation. Previous work by Kohri et. al. (2007) showed that for black holes to form from a single field model of inflation, the slope of the potential at the end of inflation must be flatter than it was at horizon exit. In this work we show that a phenomenological Hilltop model of inflation, satisfying the Kohri et. al. criteria, could lead to the production of black holes, if the power of the inflaton self-interaction is less than or equal to 3, with a reasonable number or e-folds. We extend our analysis to the running mass model, and confirm that this model results in the production of black holes, and by using the latest WMAP year 5 bounds on the running of the spectral index, and the black hole constraint we update the results of Leach et. al. (2000) excluding more of parameter space.
We derive the slow-roll conditions for a non-minimally coupled scalar field (extended quintessence) during the radiation/matter dominated era extending our previous results for thawing quintessence. We find that the ratio $ddotphi/3Hdotphi$ becomes constant but negative, in sharp contrast to the ratio for the minimally coupled scalar field. We also find that the functional form of the equation of state of the scalar field asymptotically approaches that of the minimally coupled thawing quintessence.
The dynamical properties of a model of dark energy in which two scalar fields are coupled by a non-canonical kinetic term are studied. We show that overall the addition of the coupling has only minor effects on the dynamics of the two-field system for both potentials studied, even preserving many of the features of the assisted quintessence scenario. The coupling of the kinetic terms enlarges the regions of stability of the critical points. When the potential is of an additive form, we find the kinetic coupling has an interesting effect on the dynamics of the fields as they approach the inflationary attractor, with the result that the combined equation of state of the scalar fields can approach -1 during the transition from a matter dominated universe to the recent period of acceleration.
We explore the possibility that a scalar field with appropriate Lagrangian can mimic a perfect fluid with an affine barotropic equation of state. The latter can be thought of as a generic cosmological dark component evolving as an effective cosmological constant plus a generalized dark matter. As such, it can be used as a simple, phenomenological model for either dark energy or unified dark matter. Furthermore, it can approximate (up to first order in the energy density) any barotropic dark fluid with arbitrary equation of state. We find that two kinds of Lagrangian for the scalar field can reproduce the desired behaviour: a quintessence-like with a hyperbolic potential, or a purely kinetic k-essence one. We discuss the behaviour of these two classes of models from the point of view of the cosmological background, and we give some hints on their possible clustering properties.